March 21, Week 9

Today: Chapter 7, Energy

Homework \#7:
Mastering Physics: 6 problems from chapter 7
Written Question: 7.60
Due Monday, March 26 at 11:59pm
Written Homework \#5 in mailboxes.

If your exam was not in your mailbox, please come see me.

Review

Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Review

Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Conservative Forces - Forces that create potential energy. For a conservative force,

$$
W=-\Delta U
$$

Review

Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Conservative Forces - Forces that create potential energy. For a conservative force,

$$
W=-\Delta U
$$

Conservation of Energy - If only conservative forces do work on an object, its total energy cannot change.

Total Energy, E = the sum of kinetic and potential energy.

$$
E=K+U
$$

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Conservation of Mechanical Energy

If gravity is the only force doing work on an object, $E_{1}=E_{2}$.

Conservation of Mechanical Energy

If gravity is the only force doing work on an object, $E_{1}=E_{2}$.
Mechanical Energy,

$$
E=K+U_{g}=\frac{1}{2} M v^{2}+M g y
$$

Conservation of Mechanical Energy

If gravity is the only force doing work on an object, $E_{1}=E_{2}$.
Mechanical Energy,

$$
E=K+U_{g}=\frac{1}{2} M v^{2}+M g y
$$

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

Conservation of Mechanical Energy

If gravity is the only force doing work on an object, $E_{1}=E_{2}$.
Mechanical Energy,

$$
E=K+U_{g}=\frac{1}{2} M v^{2}+M g y
$$

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

Example: A mass is started from rest at the top of a frictionless slide of height h, how fast is it going at the bottom?

Conservation of Mechanical Energy II

If gravity is the only force doing work on an object,

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

Example: A Mass is started from rest at the top of a frictionless half-pipe at a height h, how far will it rise on the other side?

Conservation of Mechanical Energy II

If gravity is the only force doing work on an object,

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

Example: A Mass is started from rest at the top of a frictionless half-pipe at a height h, how far will it rise on the other side?

For gravity, the zero for potential energy can be set arbitrarily.

Conservation of Mechanical Energy II

If gravity is the only force doing work on an object,

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

Example: A Mass is started from rest at the top of a frictionless half-pipe at a height h, how far will it rise on the other side?

For gravity, the zero for potential energy can be set arbitrarily.

Example: A Mass is started from rest at the top of a frictionless half-pipe at a height h, how fast will it be going at height $h / 2$?

Clicker Quiz

A roller coaster starts from rest at point A, goes through the loop-to-loop, and arrives at point C. If friction can be ignored and the roller coaster simply slides along its track, how fast will the roller coaster be going at C ?

Clicker Quiz

A roller coaster starts from rest at point A, goes through the loop-to-loop, and arrives at point C. If friction can be ignored and the roller coaster simply slides along its track, how fast will the roller coaster be going at C ?
(a) $\sqrt{2 g h}$

Clicker Quiz

A roller coaster starts from rest at point A, goes through the loop-to-loop, and arrives at point C. If friction can be ignored and the roller coaster simply slides along its track, how fast will the roller coaster be going at C ?

A

(a) $\sqrt{2 g h}$
(b) $\sqrt{2 g(h-20 m)}$

Clicker Quiz

A roller coaster starts from rest at point A, goes through the loop-to-loop, and arrives at point C. If friction can be ignored and the roller coaster simply slides along its track, how fast will the roller coaster be going at C ?

A

Clicker Quiz

A roller coaster starts from rest at point A, goes through the loop-to-loop, and arrives at point C. If friction can be ignored and the roller coaster simply slides along its track, how fast will the roller coaster be going at C ?

Clicker Quiz

A roller coaster starts from rest at point A, goes through the loop-to-loop, and arrives at point C. If friction can be ignored and the roller coaster simply slides along its track, how fast will the roller coaster be going at C ?
(a) $\sqrt{2 g h}$

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
W_{g}=-\Delta U_{g}=-\left(M g y_{1}-M g y_{2}\right)
$$

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
W_{g}=-\Delta U_{g}=-\left(M g y_{1}-M g y_{2}\right)
$$

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
\begin{aligned}
& W_{g}=-\Delta U_{g}=-\left(M g y_{1}-M g y_{2}\right) \\
& W_{\text {other }}=\text { Work done by any other forces }
\end{aligned}
$$

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
\begin{aligned}
& W_{g}=-\Delta U_{g}=-\left(M g y_{1}-M g y_{2}\right) \\
& W_{o t h e r}=\text { Work done by any other forces } \\
& W_{\text {total }}=W_{g}+W_{\text {other }}
\end{aligned}
$$

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
\begin{aligned}
& W_{g}=-\Delta U_{g}=-\left(M g y_{1}-M g y_{2}\right) \\
& W_{\text {other }}=\text { Work done by any other forces } \\
& W_{\text {total }}=W_{g}+W_{\text {other }}
\end{aligned}
$$

$$
W_{\text {total }}=\Delta K
$$

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
\begin{aligned}
& W_{g}=-\Delta U_{g}=-\left(M g y_{1}-M g y_{2}\right) \\
& W_{\text {other }}=\text { Work done by any other forces } \\
& W_{\text {total }}=W_{g}+W_{\text {other }}
\end{aligned}
$$

$$
W_{\text {total }}=\Delta K \Rightarrow-\Delta U_{g}+W_{\text {other }}=\Delta K
$$

Other Forces

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
\begin{aligned}
& W_{g}=-\Delta U_{g}=-\left(M g y_{1}-M g y_{2}\right) \\
& W_{o t h e r}=\text { Work done by any other forces } \\
& W_{\text {total }}=W_{g}+W_{\text {other }}
\end{aligned}
$$

$$
\begin{gathered}
W_{\text {total }}=\Delta K \Rightarrow-\Delta U_{g}+W_{o t h e r}=\Delta K \\
-\left(M g y_{1}-M g y_{2}\right)+W_{o t h e r}=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}
\end{gathered}
$$

Other Forces II

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}+W_{\text {other }}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

Other Forces II

When other forces do work on an object (e.g. friction), while energy may not be conserved, we can still use the energy equations to predict characteristics of the motion.

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}+W_{\text {other }}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

Example: A mass slides down a $23^{\circ}, 2-m$ long incline. If it starts with speed $5 \mathrm{~m} / \mathrm{s}$ and $\mu_{k}=0.6$, what is its speed at the bottom?

