March 19, Week 9

Today: Chapter 7, Energy

Homework \#6: Mastering Physics: 9 problems from chapters 5 and 6
Written: None.
Due Wednesday at 11:59pm

Exam \#3 in mailboxes. If your exam is not there, please come see me.

Make-up exam question (worth an additional 5\% points) due Wednesday at the beginning of lecture.

Review

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}=F s \cos \phi
$$

Review

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}=F s \cos \phi
$$

For variable force and straight-line displacement:

Review

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}=F s \cos \phi
$$

For variable force and straight-line displacement:

In either case, the work-energy theorem holds:

$$
W_{\text {total }}=\Delta K=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}
$$

Power

Power - The rate at which work is done.

Power

Power - The rate at which work is done.

$$
P_{a v}=\frac{\Delta W}{\Delta t}
$$

Power

Power - The rate at which work is done.

$$
P_{a v}=\frac{\Delta W}{\Delta t} \quad \text { unit: } J / s=W a t t
$$

Power

Power - The rate at which work is done.

$$
\begin{aligned}
& P_{a v}=\frac{\Delta W}{\Delta t} \quad \text { unit: } J / s=W a t t \\
& P=\lim _{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t}=\frac{d W}{d t}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}
\end{aligned}
$$

Power

Power - The rate at which work is done.

$$
\begin{aligned}
& P_{a v}=\frac{\Delta W}{\Delta t} \quad \text { unit: } J / s=W a t t \\
& P=\lim _{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t}=\frac{d W}{d t}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}
\end{aligned}
$$

In the U. S., unit of work is $l b \cdot f t$. The unit of power should be the $l b \cdot f t / s$, but we use the horsepower ($h p$).

Power

Power - The rate at which work is done.

$$
\begin{aligned}
& P_{a v}=\frac{\Delta W}{\Delta t} \quad \text { unit: } J / s=W a t t \\
& P=\lim _{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t}=\frac{d W}{d t}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}
\end{aligned}
$$

In the U. S., unit of work is $l b \cdot f t$. The unit of power should be the $l b \cdot f t / s$, but we use the horsepower ($h p$).

$$
1 \mathrm{hp}=550 \mathrm{lb} \cdot \mathrm{ft} / \mathrm{s}=746 \mathrm{Watt}
$$

Potential Energy

Some forces do work that can be saved or stored.

Potential Energy

Some forces do work that can be saved or stored.
Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Textbook defines potential energy as energy that depends on position. That is true for the examples we do in physics, but not true in every case.

Potential Energy

Some forces do work that can be saved or stored.
Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Textbook defines potential energy as energy that depends on position. That is true for the examples we do in physics, but not true in every case.

Conservative Forces - Forces that create potential energy.
Conservative forces are rare. Only gravity and the spring force are conservative. (You'll learn two more next term the electric and magnetic force.) For a force to be conservative, the work it does must be independent of path.

Conservation of Energy

For a conservative force,

$$
W=-\Delta U
$$

Conservation of Energy

For a conservative force,

$$
W=-\Delta U
$$

Conservation: A physical quantity is said to be conserved if its value does not change with time.

Conservation of Energy

For a conservative force,

$$
W=-\Delta U
$$

Conservation: A physical quantity is said to be conserved if its value does not change with time.

Conservation of Energy - If only conservative forces do work on an object, its total energy cannot change.

Total Energy, E = the sum of kinetic and potential energy.

$$
E=K+U
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{t o t a l}=W
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{t o t a l}=W
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W \curvearrowright-\Delta U
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W \overbrace{-\Delta U}
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

$$
\Delta K=-\Delta U
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W \longrightarrow-\Delta U
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

$$
\begin{gathered}
\Delta K=-\Delta U \\
K_{2}-K_{1}=-\left(U_{2}-U_{1}\right)
\end{gathered}
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W \hookrightarrow-\Delta U
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

$$
\begin{gathered}
\Delta K=-\Delta U \\
K_{2}-K_{1}=-\left(U_{2}-U_{1}\right) \Rightarrow K_{2}-K_{1}=U_{1}-U_{2}
\end{gathered}
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W \longleftrightarrow-\Delta U
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

$$
\begin{gathered}
\Delta K=-\Delta U \\
K_{2}-K_{1}=-\left(U_{2}-U_{1}\right) \Rightarrow K_{2}-K_{1}=U_{1}-U_{2} \\
K_{1}+U_{1}=K_{2}+U_{2}
\end{gathered}
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W \longleftrightarrow-\Delta U
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$.

$$
\begin{gathered}
\Delta K=-\Delta U \\
K_{2}-K_{1}=-\left(U_{2}-U_{1}\right) \Rightarrow K_{2}-K_{1}=U_{1}-U_{2} \\
K_{1}+U_{1}=K_{2}+U_{2} \Rightarrow E_{1}=E_{2}
\end{gathered}
$$

Clicker Quiz

A ball is thrown upwards with a kinetic energy of 50 J . When the ball reaches its maximum height, by how much has the ball's gravitational potential energy changed? Ignore air resistance.

Clicker Quiz

A ball is thrown upwards with a kinetic energy of 50 J . When the ball reaches its maximum height, by how much has the ball's gravitational potential energy changed? Ignore air resistance.
(a) 0 J

Clicker Quiz

A ball is thrown upwards with a kinetic energy of 50 J . When the ball reaches its maximum height, by how much has the ball's gravitational potential energy changed? Ignore air resistance.
(a) 0 J
(b) 50 J

Clicker Quiz

A ball is thrown upwards with a kinetic energy of 50 J . When the ball reaches its maximum height, by how much has the ball's gravitational potential energy changed? Ignore air resistance.
(a) 0 J
(b) 50 J
(c) -50 J

Clicker Quiz

A ball is thrown upwards with a kinetic energy of 50 J . When the ball reaches its maximum height, by how much has the ball's gravitational potential energy changed? Ignore air resistance.
(a) 0 J
(b) 50 J
(c) -50 J
(d) 100 J

Clicker Quiz

A ball is thrown upwards with a kinetic energy of 50 J . When the ball reaches its maximum height, by how much has the ball's gravitational potential energy changed? Ignore air resistance.
(a) 0 J
(b) 50 J
(c) -50 J
(d) 100 J

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Gravitational Potential Energy II

Gravitational Potential Energy - Stored energy due to gravity. Depends only on an object's height above the ground.

We need to find the work done by gravity.

Conservation of Mechanical Energy

If gravity is the only force doing work on an object, $E_{1}=E_{2}$.

Conservation of Mechanical Energy

If gravity is the only force doing work on an object, $E_{1}=E_{2}$.
Mechanical Energy,

$$
E=K+U_{g}=\frac{1}{2} M v^{2}+M g y
$$

Conservation of Mechanical Energy

If gravity is the only force doing work on an object, $E_{1}=E_{2}$.
Mechanical Energy,

$$
E=K+U_{g}=\frac{1}{2} M v^{2}+M g y
$$

$$
\frac{1}{2} M v_{1}^{2}+M g y_{1}=\frac{1}{2} M v_{2}^{2}+M g y_{2}
$$

