March 7, Week 8

Today: Chapter 6, Work

If interested in Physics 110, please see me after lecture.

Exam 3: Friday, March 9
Review Session: Thursday, March 8, 7:30PM in Room 114 of Regener Hall

Solution for practice exam now available on website
Practice Problems on Mastering Physics

Review

For constant force and straight-line displacement:
$W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathrm{s}}$

Review

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}
$$

Example: How much work is done by a force of 50 N applied at 23° if the mass moves 5 m at 195° ?

Review

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}
$$

Example: How much work is done by a force of 50 N applied at 23° if the mass moves 5 m at 195° ?

Negative work causes an object to slow down

Review

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}
$$

Example: How much work is done by a force of 50 N applied at 23° if the mass moves 5 m at 195° ?

Negative work causes an object to slow down or, by Newton's Third Law:

$$
W_{\text {Done to object }}=-W_{\text {Done by object }}
$$

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.
\vec{B}

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi
$$

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.
\vec{B}
$\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi$
\vec{A}

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi \\
& \phi=\beta-\alpha
\end{aligned}
$$

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

$$
\begin{gathered}
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi \\
\phi=\beta-\alpha \\
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos (\beta-\alpha)
\end{gathered}
$$

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

$$
\begin{aligned}
& \quad \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi \\
& \quad \phi=\beta-\alpha \\
& \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos (\beta-\alpha)= \\
& A B(\cos \beta \cos \alpha+\sin \beta \sin \alpha)=
\end{aligned}
$$

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi \\
& \quad \phi=\beta-\alpha \\
& \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos (\beta-\alpha)= \\
& A B(\cos \beta \cos \alpha+\sin \beta \sin \alpha)= \\
& (A \cos \alpha)(B \cos \beta)+(A \sin \alpha)(B \sin \beta)
\end{aligned}
$$

Component Dot Product

The dot product can also be written in terms of the components of the individual vectors.

$$
\begin{gathered}
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi \\
\phi=\beta-\alpha \\
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos (\beta-\alpha)= \\
A B(\cos \beta \cos \alpha+\sin \beta \sin \alpha)= \\
(A \cos \alpha)(B \cos \beta)+(A \sin \alpha)(B \sin \beta) \\
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A_{x} B_{x}+A_{y} B_{y}
\end{gathered}
$$

Total Work

Since work is a scalar, the total work done by a collection of forces is given by the sum of the individual works.

$$
W_{\text {total }}=W_{1}+W_{2}+W_{3}+\ldots
$$

Total Work

Since work is a scalar, the total work done by a collection of forces is given by the sum of the individual works.

$$
W_{t o t a l}=W_{1}+W_{2}+W_{3}+\ldots
$$

Example: What is the total work down by forces $\overrightarrow{\mathbf{F}}_{1}=50 \mathrm{~N}$ at 23° and $\overrightarrow{\mathbf{F}}_{2}=75 \mathrm{~N}$ at 140° if $\overrightarrow{\mathbf{s}}=5 \mathrm{~m}$ at 195° ?

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

Work, $W=F s$
Constant F
$\overrightarrow{\mathbf{F}}$ and $\overrightarrow{\mathrm{s}}$ parallel

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

constant $F \Rightarrow$ constant $a \Rightarrow v_{2}^{2}=v_{1}^{2}+2 a\left(x_{2}-x_{1}\right)=v_{1}^{2}+2 a s$

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

constant $F \Rightarrow$ constant $a \Rightarrow v_{2}^{2}=v_{1}^{2}+2 a\left(x_{2}-x_{1}\right)=v_{1}^{2}+2 a s$

$$
F=M a \Rightarrow a=\frac{F}{M}
$$

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

constant $F \Rightarrow$ constant $a \Rightarrow v_{2}^{2}=v_{1}^{2}+2 a\left(x_{2}-x_{1}\right)=v_{1}^{2}+2 a s$

$$
F=M a \Rightarrow a=\frac{F}{M} \Rightarrow v_{2}^{2}=v_{1}^{2}+\frac{2 F s}{M}
$$

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. Generally, it says that work causes a change in speed.

constant $F \Rightarrow$ constant $a \Rightarrow v_{2}^{2}=v_{1}^{2}+2 a\left(x_{2}-x_{1}\right)=v_{1}^{2}+2 a s$

$$
F=M a \Rightarrow a=\frac{F}{M} \Rightarrow v_{2}^{2}=v_{1}^{2}+\frac{2 F s}{M}=v_{1}^{2}+\frac{2 W}{M}
$$

Work-Energy Theorem II

$$
v_{2}^{2}=v_{1}^{2}+\frac{2 W}{M}
$$

Work-Energy Theorem II

$$
\begin{array}{r}
v_{2}^{2}=v_{1}^{2}+\frac{2 W}{M} \\
W=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}
\end{array}
$$

Work-Energy Theorem II

$$
\begin{gathered}
v_{2}^{2}=v_{1}^{2}+\frac{2 W}{M} \\
W=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}=K_{2}-K_{1}
\end{gathered}
$$

Work-Energy Theorem II

$$
\begin{gathered}
v_{2}^{2}=v_{1}^{2}+\frac{2 W}{M} \\
W=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}=K_{2}-K_{1}
\end{gathered}
$$

$$
K=\frac{1}{2} M v^{2}
$$

Work-Energy Theorem II

$$
\begin{gathered}
v_{2}^{2}=v_{1}^{2}+\frac{2 W}{M} \\
W=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}=K_{2}-K_{1} \\
K=\frac{1}{2} M v^{2}
\end{gathered}
$$

$K=$ Kinetic Energy $=$ Energy of motion. Note: $v^{2}=v_{x}^{2}+v_{y}^{2}$ in two-dimensions.

Example

For multiple forces:

$$
W_{t o t a l}=\Delta K=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}
$$

Example

For multiple forces:

$$
W_{\text {total }}=\Delta K=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}
$$

Example: A 5 kg mass is moving with $\overrightarrow{\mathrm{V}}_{1}=7 \mathrm{~m} / \mathrm{s}$ at 180°. If a total of -33 J of work is done by forces acting on it, what is its speed and direction after?

Variable Forces

To find the work done by a changing force requires integration.

Variable Forces

To find the work done by a changing force requires integration.
\vec{s}

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F
$\overrightarrow{\mathbf{F}}$ and $\overrightarrow{\mathrm{s}}$ parallel
$x_{1} \quad x_{2}$

Variable Forces

To find the work done by a changing force requires integration.
\vec{s}

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F
$\overrightarrow{\mathrm{F}}$ and $\overrightarrow{\mathrm{s}}$ parallel

Variable Forces

To find the work done by a changing force requires integration.
\vec{s}

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F
$\overrightarrow{\mathrm{F}}$ and $\overrightarrow{\mathrm{s}}$ parallel

Variable Forces

To find the work done by a changing force requires integration.
\vec{s}

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F
\vec{F} and \vec{s} parallel

Variable Forces

To find the work done by a changing force requires integration.
\vec{s}

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F
\vec{F} and \vec{s} parallel

Variable Forces

To find the work done by a changing force requires integration.

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F
\vec{F} and \vec{s} parallel

$$
W=F\left(x_{2}-x_{1}\right)
$$

Variable Forces

To find the work done by a changing force requires integration.

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F \vec{F} and \vec{s} parallel

$$
W=F\left(x_{2}-x_{1}\right)
$$

Variable Forces

To find the work done by a changing force requires integration.
\vec{s}

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

Constant F \vec{F} and \vec{s} parallel

$$
W=F\left(x_{2}-x_{1}\right)
$$

Variable Forces

To find the work done by a changing force requires integration.

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

$$
W=F\left(x_{2}-x_{1}\right)
$$

Variable Forces

To find the work done by a changing force requires integration.

$$
W=F s=F\left(x_{2}-x_{1}\right)
$$

$$
W=F\left(x_{2}-x_{1}\right)
$$

Work is the area
under the curve

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.$\overrightarrow{\mathrm{s}}$

Work is the area under this curve

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Work is the area under this curve
Split region into many small rectangles.

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Work is the area under this curve
Split region into many small rectangles.

Variable Forces II

To find the work done by a changing force requires integration.
$\overrightarrow{\mathrm{s}}$

Work is the area under this curve
Split region into many small rectangles.

Variable Forces II

To find the work done by a changing force requires

 integration.$\overrightarrow{\mathrm{s}}$

Work is the area under this curve
Split region into many small rectangles.

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Work is the area under this curve
Split region into many small rectangles.
Find area of each rectangle and add.

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Work is the area under this curve
Split region into many small rectangles.
Find area of each rectangle and add.

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Work is the area under this curve
Split region into many small rectangles.
Find area of each rectangle and add.

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Work is the area under this curve
Split region into many small rectangles.
Find area of each rectangle and add.

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Work is the area under this curve
Split region into many small rectangles.
Find area of each rectangle and add.

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Work is the area under this curve
Split region into many small rectangles.
Find area of each rectangle and add.
Take a limit to find the exact area.

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Variable Forces II

To find the work done by a changing force requires integration.
\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.\vec{s}

Variable Forces II

To find the work done by a changing force requires

 integration.

Variable Force Arbitrary Direction

Still only the component of the force parallel to the displacement does work.

Variable Force Arbitrary Direction

Still only the component of the force parallel to the displacement does work.

Variable Force Arbitrary Direction

Still only the component of the force parallel to the displacement does work.

Variable Force Arbitrary Direction

Still only the component of the force parallel to the displacement does work.

Variable Force Arbitrary Direction

Still only the component of the force parallel to the displacement does work.

Variable Force Arbitrary Direction

Still only the component of the force parallel to the displacement does work.

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!!

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! \vec{S}

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! \vec{S}

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

$$
W=\int_{x_{1}}^{x_{2}} F d x=\int_{x_{1}}^{x_{2}} M a d x=M \int_{x_{1}}^{x_{2}}\left(\frac{d v}{d t}\right) d x
$$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

$$
W=\int_{x_{1}}^{x_{2}} F d x=\int_{x_{1}}^{x_{2}} M a d x=M \int_{x_{1}}^{x_{2}}\left(\frac{d v}{d t}\right) \underline{d x}
$$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

$$
W=\int_{x_{1}}^{x_{2}} F d x=\int_{x_{1}}^{x_{2}} M a d x=M \int_{x_{1}}^{x_{2}}\left(\frac{d v}{d t}\right) \underline{d x}
$$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

$$
W=\int_{x_{1}}^{x_{2}} F d x=\int_{x_{1}}^{x_{2}} M a d x=M \int_{x_{1}}^{x_{2}}\left(\frac{d v}{d t}\right) \frac{d x}{d t}
$$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

$$
W=\int_{x_{1}}^{x_{2}} F d x=\int_{x_{1}}^{x_{2}} M a d x=M \int_{x_{1}}^{x_{2}}\left(\frac{d v}{d t}\right) \nrightarrow \frac{d x}{d t}=M \int d v\left(\frac{d x}{d t}\right)
$$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! \vec{S}

$W=M \int d v\left(\frac{d x}{d t}\right)$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!! $\overrightarrow{\mathrm{S}}$

$$
W=M \int d v\left(\frac{d x}{d t}\right)=M \int_{v_{1}}^{v_{2}} d v(v)=M \int_{v_{1}}^{v_{2}} v d v
$$

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!!

Work-Energy Theorem (Again)

The work-energy theorem holds for variable forces!!
$\overrightarrow{\mathbf{F}}$
$W=M \int d v\left(\frac{d x}{d t}\right)=M \int_{v_{1}}^{v_{2}} d v(v)=M \int_{v_{1}}^{v_{2}} v d v=\left.M\left(\frac{v^{2}}{2}\right)\right|_{v_{1}} ^{v_{2}}$
$W=\frac{1}{2} M v_{2}^{2}-\frac{1}{2} M v_{1}^{2}$

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.
\sum_{5}^{∞}

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

$$
F=k s
$$

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

$$
F=k s
$$

$k=$ spring constant
$s=$ stretching distance

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

$$
F=k s
$$

$k=$ spring constant
$s=$ stretching distance

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

$$
F=k s
$$

$k=$ spring constant
$s=$ stretching distance

Hooke's Law

A simple example of a variable force is the force needed to stretch a spring.

Hooke's Law - The force needed to stretch or compress a spring increases linearly with stretching distance

$$
F=k s
$$

$k=$ spring constant
$s=$ stretching distance

Spring Examples

Example: A 5 kg mass is hung from a spring which stretches 10 cm . What is the spring constant?

Spring Examples

Example: A 5 kg mass is hung from a spring which stretches 10 cm . What is the spring constant?

Example: How far would a spring with a constant twice as large stretch when 5 kg is hung from it?

Work to Stretch a Spring

$\sum_{i=1}^{\infty}$

Work to Stretch a Spring

Work to Stretch a Spring

\qquad

Work to Stretch a Spring

\qquad

Work to Stretch a Spring

\qquad

Work to Stretch a Spring

Work to Stretch a Spring

Work to Stretch a Spring

$$
\begin{aligned}
W & =\frac{1}{2}\left(s_{2}\right)\left(F_{2}\right)-\frac{1}{2}\left(s_{1}\right)\left(F_{1}\right) \\
W & =\frac{1}{2}\left(s_{2}\right)\left(k s_{2}\right)-\frac{1}{2}\left(s_{1}\right)\left(k s_{1}\right)
\end{aligned}
$$

Work to Stretch a Spring

