March 5, Week 8

Today: Chapter 6, Work

Homework \#5, Due Today.
Mastering Physics: 10 problems from chapters 4 and 5 Written Question: 5.74

If interested in Physics 110, please see me after lecture.

Exam 3: Friday, March 9
Review Session: Thursday, March 8, 7:30PM Practice
Exam now available on website Practice Problems on Mastering Physics

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Work - a measure of much effort goes into causing motion.

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Work - a measure of much effort goes into causing motion.

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Work - a measure of much effort goes into causing motion.

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Work - a measure of much effort goes into causing motion.

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Work - a measure of much effort goes into causing motion.

$$
\begin{aligned}
& \vec{s}=\text { new name } \\
& \text { for displacement } \\
& \text { = distance and } \\
& \text { direction traveled. }
\end{aligned}
$$

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Work - a measure of much effort goes into causing motion.
$\vec{s}=$ new name
for displacement
= distance and
direction traveled.

Work, $W=F s$

Beyond Newton's Laws

While Newton's Laws are a way to explain motion, they are not always the easiest or most intuitive way.

Work - a measure of much effort goes into causing motion.
$\vec{s}=$ new name for displacement
= distance and direction traveled.

Work, $W=F s$
Unit: $N \cdot m=J$ Joule

Restrictions

 \vec{s}

This equation is correct only in the situation that:

Restrictions

\vec{s}

This equation is correct only in the situation that:
$\overrightarrow{\mathrm{F}}$ is constant

Restrictions

\vec{s}

This equation is correct only in the situation that:
$\overrightarrow{\mathrm{F}}$ is constant
\vec{s} is a straight line

Restrictions

\vec{s}

This equation is correct only in the situation that:
$\overrightarrow{\mathrm{F}}$ is constant
\vec{s} is a straight line
$\overrightarrow{\mathrm{F}}$ and $\overrightarrow{\mathrm{s}}$ are in the same direction.

Example

Example: How much work is done by someone lifting a 5 kg mass $1 m$ vertically at constant speed?

Perpendicular Force

A force perpendicular to the displacement does no work.

Perpendicular Force

A force perpendicular to the displacement does no work.

Perpendicular Force

A force perpendicular to the displacement does no work.

\vec{H}

Perpendicular Force

A force perpendicular to the displacement does no work.
\vec{s}

$\overrightarrow{\mathrm{F}}$

Perpendicular Force

A force perpendicular to the displacement does no work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
W=F s \cos \phi
$$

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
W=F s \cos \phi
$$

Only correct for Constant force \& Straight-line displacement

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

(c) They do an equal amount of work

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

(c) They do an equal amount of work
(d) Not enough information to determine

Clicker Quiz

If the two constant forces below have equal magnitude, which of them does more work during the displacement shown?

(d) Not enough information to determine

The Dot Product

We can also write the equation for work in terms of the dot product.

The Dot Product

We can also write the equation for work in terms of the dot product.

Dot Product or Scalar Product - A way to multiply two vectors. The result of which is a scalar.

The Dot Product

We can also write the equation for work in terms of the dot product.

Dot Product or Scalar Product - A way to multiply two vectors. The result of which is a scalar.

The Dot Product II

Like with work, the dot product gives us the parallel component of one vector relative to another, and therefore, how much two vectors "overlap".

The Dot Product II

Like with work, the dot product gives us the parallel component of one vector relative to another, and therefore, how much two vectors "overlap".

The Dot Product II

Like with work, the dot product gives us the parallel component of one vector relative to another, and therefore, how much two vectors "overlap".

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos 0^{\circ}=A B \\
& \Rightarrow \text { maximum overlap }
\end{aligned}
$$

The Dot Product II

Like with work, the dot product gives us the parallel component of one vector relative to another, and therefore, how much two vectors "overlap".

The Dot Product II

Like with work, the dot product gives us the parallel component of one vector relative to another, and therefore, how much two vectors "overlap".

Example II

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}
$$

Example II

For constant force and straight-line displacement:

$$
W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}
$$

Example: How much work is done by a force of 50 N applied at 23° if the mass moves 5 m at 195° ?

