Leap Day, Week 7

Today: Chapter 5, Applying Newton's Laws

Homework \#5, Due March 5. Mastering Physics: 10 problems from chapters 4 and 5 Written Question: 5.74

Exam \#2 now in mailboxes. Percentage on top of page is with curve.

If interested in Physics 110, please see me after lecture.

Incline Example

Example: A mass is placed on an incline with angle α. It does not move. What is the magnitude of the static frictional force (and normal force) acting on it?

Incline Example

Example: A mass is placed on an incline with angle α. It does not move. What is the magnitude of the static frictional force (and normal force) acting on it?

$$
\begin{aligned}
& W_{\|}=W \sin \alpha=M g \sin \alpha \\
& W_{\perp}=W \cos \alpha=M g \cos \alpha
\end{aligned}
$$

Maximum Static Friction

Experiments show that the static friction's maximum value obeys a simple equation.

Maximum Static Friction

Experiments show that the static friction's maximum value obeys a simple equation.

$$
f_{s, \max }=\mu_{s} n
$$

μ_{s} - coefficient of static friction. Table 5. 1, p. 147

Maximum Static Friction

Experiments show that the static friction's maximum value obeys a simple equation.

$$
f_{s, \max }=\mu_{s} n
$$

μ_{s} - coefficient of static friction. Table 5. 1, p. 147

Example: A 5 kg wooden block is placed on a wooden ramp which is initially horizontal. To what maximum angle can the ramp be lifted before the block slides?

Clicker Quiz

A $30-N$ mass is placed on a flat, horizontal surface. A horizontal force $F=10 N$ is applied to it. It does not move. If the coefficient of static friction between the mass and the surface is $\mu_{s}=0.5$, how much static friction is acting on the mass?

Clicker Quiz

A $30-N$ mass is placed on a flat, horizontal surface. A horizontal force $F=10 \mathrm{~N}$ is applied to it. It does not move. If the coefficient of static friction between the mass and the surface is $\mu_{s}=0.5$, how much static friction is acting on the mass?

(a) 30 N

Clicker Quiz

A $30-N$ mass is placed on a flat, horizontal surface. A horizontal force $F=10 \mathrm{~N}$ is applied to it. It does not move. If the coefficient of static friction between the mass and the surface is $\mu_{s}=0.5$, how much static friction is acting on the mass?

(a) 30 N
(b) 15 N

Clicker Quiz

A $30-N$ mass is placed on a flat, horizontal surface. A horizontal force $F=10 \mathrm{~N}$ is applied to it. It does not move. If the coefficient of static friction between the mass and the surface is $\mu_{s}=0.5$, how much static friction is acting on the mass?

(a) 30 N
(b) $15 N$
(c) 10 N

Clicker Quiz

A $30-N$ mass is placed on a flat, horizontal surface. A horizontal force $F=10 \mathrm{~N}$ is applied to it. It does not move. If the coefficient of static friction between the mass and the surface is $\mu_{s}=0.5$, how much static friction is acting on the mass?

(a) 30 N
(b) 15 N
(c) 10 N
(d) 0.5 N

Clicker Quiz

A $30-N$ mass is placed on a flat, horizontal surface. A horizontal force $F=10 \mathrm{~N}$ is applied to it. It does not move. If the coefficient of static friction between the mass and the surface is $\mu_{s}=0.5$, how much static friction is acting on the mass?

(a) 30 N
(b) 15 N
(c) 10 N
(d) 0.5 N

Kinetic Friction

Kinetic Friction $-\overrightarrow{\mathrm{f}}_{k}$, sliding friction.

Kinetic Friction

Kinetic Friction $-\overrightarrow{\mathrm{f}}_{k}$, sliding friction.
Experiments show that the kinetic friction's value is approximately constant and obeys a simple equation.

$$
f_{k}=\mu_{k} n
$$

μ_{k} - coefficient of kinetic friction. Table 5. 1, p. 147

Kinetic Friction

Kinetic Friction - $\overrightarrow{\mathrm{f}}_{k}$, sliding friction.
Experiments show that the kinetic friction's value is approximately constant and obeys a simple equation.

$$
f_{k}=\mu_{k} n
$$

μ_{k} - coefficient of kinetic friction. Table 5. 1, p. 147

Example: A wooden block is sliding down a 37° wooden incline. What is its acceleration?

