February 15, Week 5

Today: Chapter 4, Newton's Laws of Motion

Written Homework \#3 in boxes this afternoon. Homework \#4, Due February 20. Mastering Physics: 9 problems from chapters 1 and 3 Written Question: 3.56

Exam \#2, Next Friday, February 24 Review Session, Thursday, February 23, 7:30PM

Exam \#1 in boxes. Circled numbers are problems missed on multiple choice. Percentage on top is with 5 -point curve included.

Newton's First Law

First Law - The Law of Inertia
An object at rest stays at rest, an object in uniform motion stays if uniform motion if (and only if) the net force acting on the object is zero.
Uniform motion - Straight line and constant speed, i.e, constant velocity.

Inertia - The property of all matter to stay in motion if already in motion; to stay at rest if already at rest.

Newton's Second Law

Forces cause acceleration

Newton's Second Law

Forces cause acceleration

$$
\Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Newton's Second Law

Forces cause acceleration

$$
\Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

Newton's Second Law

Forces cause acceleration

$$
\Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
M a \Rightarrow
$$

Newton's Second Law

Forces cause acceleration

$$
\Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
M a \Rightarrow k g \cdot m / s^{2}
$$

Newton's Second Law

Forces cause acceleration

$$
\Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
M a \Rightarrow \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\Sigma F
$$

Newton's Second Law

Forces cause acceleration

$$
\Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
\begin{gathered}
M a \Rightarrow k g \cdot m / s^{2} \\
\Sigma F \Rightarrow N
\end{gathered}
$$

Newton's Second Law

Forces cause acceleration

$$
\Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
\begin{gathered}
M a \Rightarrow k g \cdot m / s^{2} \\
\Sigma F \Rightarrow N
\end{gathered}
$$

$$
N=k g \cdot m / s^{2}
$$

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N

$$
\longrightarrow 1 \mathrm{~m} / \mathrm{s}^{2}
$$

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Quiz Review

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Newton's Third Law

For every action, there is an equal but opposite reaction.

Newton's Third Law

For every action, there is an equal but opposite reaction.

Newton's Third Law

For every action, there is an equal but opposite reaction.

Newton's Third Law

For every action, there is an equal but opposite reaction.

Newton's Third Law

For every action, there is an equal but opposite reaction.

Third Law : $\overrightarrow{\mathbf{F}}_{A}=-\overrightarrow{\mathbf{F}}_{B}$

Third Law Example

Example: A car is traveling at $30 \mathrm{~m} / \mathrm{s}$. If the engine is exerting a force of 350 N , how does the car move forward and what is the engine physically doing?

Third Law Example

Example: A car is traveling at $30 \mathrm{~m} / \mathrm{s}$. If the engine is exerting a force of 350 N , how does the car move forward and what is the engine physically doing?

Action and Reaction exerted on different objects! Both of them accelerate.

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The 200 N downwards force on the crate

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The 200 N downwards force on the crate
(c) The 200 N downwards force on the earth

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The 200 N downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The 200 N downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth

Weight = downwards force on box due to earth

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The 200 N downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth

Weight = downwards force on box due to earth
Reaction = upwards force on earth due to box

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The 200 N downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth

Weight = downwards force on box due to earth
Reaction = upwards force on earth due to box

Clicker Quiz

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The 200 N downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth

Weight = downwards force on box due to earth
Reaction = upwards force on earth due to box

