February 15, Week 5

Today: Chapter 4, Newton’s Laws of Motion

Homework 4, Due February 20. Mastering Physics: 9 problems from chapters 1 and 3. Written Question: 3.56

Review

Underlying all three of Newton's Laws is the concept of force.

Review

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Review

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Unit of Force:

Review

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull
Unit of Force:

- U. S. Customary: Pound (lb)

Review

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull
Unit of Force:

- U. S. Customary: Pound (lb)
- S. I. : Newton (N)

Review

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull
Unit of Force:

- U. S. Customary: Pound (lb)
- S. I. : Newton (N), $1 N=0.22 \mathrm{lb}$ (on Earth)

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Newton's First Law

First Law - The Law of Inertia
An object at rest stays at rest, an object in uniform motion stays if uniform motion if (and only if) the net force acting on the object is zero.
Uniform motion - Straight line and constant speed, i.e, constant velocity.

Inertia - The property of all matter to stay in motion if already in motion; to stay at rest if already at rest.

First Law Example

Example: A 6860 N car is traveling with a constant $30 \mathrm{~m} / \mathrm{s}$ speed on a straight road. If the engine is exerting a forward $350 N$ force*, what is the magnitude and direction of all forces acting on the car? (* Not technically correct, but good enough for now.)

First Law Example

Example: A 6860 N car is traveling with a constant $30 \mathrm{~m} / \mathrm{s}$ speed on a straight road. If the engine is exerting a forward $350 N$ force*, what is the magnitude and direction of all forces acting on the car? (* Not technically correct, but good enough for now.)

Normal Force $-\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

First Law Example

Example: A 6860 N car is traveling with a constant $30 \mathrm{~m} / \mathrm{s}$ speed on a straight road. If the engine is exerting a forward $350 N$ force*, what is the magnitude and direction of all forces acting on the car? (* Not technically correct, but good enough for now.)

Normal Force $-\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Friction - $\overrightarrow{\mathrm{f}}$, force which slows a moving object, always opposed to the motion

First Law Example

Example: A 6860 N car is traveling with a constant $30 \mathrm{~m} / \mathrm{s}$ speed on a straight road. If the engine is exerting a forward $350 N$ force*, what is the magnitude and direction of all forces acting on the car? (* Not technically correct, but good enough for now.)

Normal Force $-\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Friction- $\overrightarrow{\mathrm{f}}$, force which slows a moving object, always opposed to the motion \Rightarrow opposite to $\overrightarrow{\mathrm{v}}$.

First Law Example

Example: A 6860 N car is traveling with a constant $30 \mathrm{~m} / \mathrm{s}$ speed on a straight road. If the engine is exerting a forward $350 N$ force*, what is the magnitude and direction of all forces acting on the car? (* Not technically correct, but good enough for now.)

Normal Force $-\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Friction - $\overrightarrow{\mathrm{f}}$, force which slows a moving object, always opposed to the motion \Rightarrow opposite to $\overrightarrow{\mathrm{v}}$.

Free-Body Diagram - f. b. d. sketch of all the forces acting on an object using a convenient coordinate system.

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant \vec{v}

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathrm{F}}=0$ then we have a constant $\vec{v} \Rightarrow \overrightarrow{\mathrm{a}}=0$.

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow$?

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathrm{a}} \neq 0$.
Forces cause acceleration

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\vec{v} \Rightarrow \vec{a}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathrm{a}} \neq 0$.
Forces cause acceleration
Newton found that the acceleration is:

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\vec{v} \Rightarrow \vec{a}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.
Forces cause acceleration
Newton found that the acceleration is:

- in same direction as net force

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.
Forces cause acceleration
Newton found that the acceleration is:

- in same direction as net force
- directly proportional to the net force

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.
Forces cause acceleration
Newton found that the acceleration is:

- in same direction as net force
- directly proportional to the net force
- inversely proportional to the mass

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\vec{v} \Rightarrow \vec{a}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.
Forces cause acceleration
Newton found that the acceleration is:

- in same direction as net force
- directly proportional to the net force
- inversely proportional to the mass

Measure of the
amount of matter
inside an object

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\Sigma \overrightarrow{\mathbf{F}}}{M}
$$

Second Law II

$$
\overrightarrow{\mathrm{a}}=\frac{\Sigma \overrightarrow{\mathrm{F}}}{M} \Rightarrow \Sigma \overrightarrow{\mathrm{~F}}=M \overrightarrow{\mathrm{a}}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\Sigma \overrightarrow{\mathbf{F}}}{M} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\Sigma \overrightarrow{\mathbf{F}}}{M} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
M a
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\Sigma \overrightarrow{\mathbf{F}}}{M} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
M a \Rightarrow k g \cdot m / s^{2}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\Sigma \overrightarrow{\mathbf{F}}}{M} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathrm{a}}
$$

Units: Newton is a unit simplification.

$$
M a \Rightarrow k g \cdot m / s^{2}
$$

$$
\Sigma F
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\Sigma \overrightarrow{\mathbf{F}}}{M} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathrm{a}}
$$

Units: Newton is a unit simplification.

$$
\begin{gathered}
M a \Rightarrow k g \cdot m / s^{2} \\
\Sigma F \Rightarrow N
\end{gathered}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\Sigma \overrightarrow{\mathbf{F}}}{M} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}
$$

Units: Newton is a unit simplification.

$$
\begin{gathered}
M a \Rightarrow k g \cdot m / s^{2} \\
\Sigma F \Rightarrow N \\
N=k g \cdot m / s^{2}
\end{gathered}
$$

Second Law Examples

Example: A 6860 N car is in free-fall, what it its mass?

Second Law Examples

Example: A 6860 N car is in free-fall, what it its mass?

$$
W=M g
$$

Second Law Examples

Example: A 6860 N car is in free-fall, what it its mass?

$$
W=M g
$$

Example: A 6860 N car is traveling with a speed of $30 \mathrm{~m} / \mathrm{s}$ when the driver removes her foot from the gas pedal, making the engine force zero. If the frictional force is 350 N , what is the car's acceleration?

Second Law Examples

Example: A 6860 N car is in free-fall, what it its mass?

$$
W=M g
$$

Example: A 6860 N car is traveling with a speed of $30 \mathrm{~m} / \mathrm{s}$ when the driver removes her foot from the gas pedal, making the engine force zero. If the frictional force is 350 N , what is the car's acceleration?
An object already in motion will not move in the direction of the net force. It will accelerate in the direction of the net force.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N

$$
\longrightarrow 1 \mathrm{~m} / \mathrm{s}^{2}
$$

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

Clicker Quiz

A 700 kg minivan is traveling at $30 \mathrm{~m} / \mathrm{s}$ and accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal road. If there is a 350 N frictional force acting against the car, what force is the engine exerting on the car?
(a) 700 N
(b) 350 N
(c) 1050 N
(d) There is not enough information to determine.

