February 13, Week 5

Today: Chapter 3, Finish Projectile Motion

Exam #2 should be graded by Wednesday.

Homework 4, Due February 20.

Mastering Physics: 9 problems from chapters 1 and 3.

Written Question: 3.56

Projectile Equations

Projectile - Any object that is launched into motion and then acted on by only gravity.

$$a_x = 0 \quad a_y = -g$$

Projectile Equations

$v_x = v_{o,x}$	$v_y = v_{o,y} - gt$
$x = x_o + v_{o,x}t$	$y = y_o + v_{o,y}t - \frac{1}{2}gt^2$
	$v_{o,y} = v_o \sin \alpha$
$v_{o,x} = v_o \cos \alpha$	$v_{o,y} - v_{o} \sin \alpha$

$$x = x_o + v_{o,x}t$$

$$x = x_o + v_{o,x}t \Rightarrow x = x_o + v_o \cos \alpha t$$

$$x = x_o + v_{o,x}t \Rightarrow x = x_o + v_o \cos \alpha t \Rightarrow t = \frac{x - x_o}{v_o \cos \alpha}$$

$$x = x_o + v_{o,x}t \Rightarrow x = x_o + v_o \cos \alpha t \Rightarrow t = \frac{x - x_o}{v_o \cos \alpha}$$

$$y = y_o + v_{o,y}t - \frac{1}{2}gt^2$$

$$x = x_o + v_{o,x}t \Rightarrow x = x_o + v_o \cos \alpha t \Rightarrow t = \frac{x - x_o}{v_o \cos \alpha}$$

$$y = y_o + v_{o,y}t - \frac{1}{2}gt^2 \Rightarrow y = y_o + v_o \sin \alpha t - \frac{1}{2}gt^2$$

All projectiles have parabolic trajectories.

$$x = x_o + v_{o,x}t \Rightarrow x = x_o + v_o \cos \alpha t \Rightarrow \boxed{t = \frac{x - x_o}{v_o \cos \alpha}}$$

 $y = y_o + v_{o,y}t - \frac{1}{2}gt^2 \Rightarrow y = y_o + v_o \sin \alpha t - \frac{1}{2}gt^2 \quad \longleftarrow$

Substitute

$$x = x_o + v_{o,x}t \Rightarrow x = x_o + v_o \cos \alpha t \Rightarrow t = \frac{x - x_o}{v_o \cos \alpha}$$

$$y = y_o + v_{o,y}t - \frac{1}{2}gt^2 \Rightarrow y = y_o + v_o \sin \alpha t - \frac{1}{2}gt^2 \quad \longleftarrow$$

$$y = y_o + v_o \sin \alpha \left(\frac{x - x_o}{v_o \cos \alpha}\right) - \frac{1}{2}g \left(\frac{x - x_o}{v_o \cos \alpha}\right)^2$$

$$x = x_o + v_{o,x}t \Rightarrow x = x_o + v_o \cos \alpha t \Rightarrow \boxed{t = \frac{x - x_o}{v_o \cos \alpha}}$$

$$y = y_o + v_{o,y}t - \frac{1}{2}gt^2 \Rightarrow y = y_o + v_o \sin \alpha t - \frac{1}{2}gt^2 \quad \longleftarrow$$

$$y = y_o + \psi \sin \alpha \left(\frac{x - x_o}{\psi \cos \alpha} \right) - \frac{1}{2} g \left(\frac{x - x_o}{v_o \cos \alpha} \right)^2$$

Simplifying gives:

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Simplifying gives:

$$\mathbf{y} = y_o + \tan \alpha \left(\mathbf{x} - x_o \right) - \frac{g \left(\mathbf{x} - x_o \right)^2}{2v_o^2 \cos^2 \alpha}$$

Simplifying gives:

$$\mathbf{y} = y_o + \tan \alpha \left(\mathbf{x} - x_o \right) - \frac{g \left(\mathbf{x} - x_o \right)^2}{2v_o^2 \cos^2 \alpha}$$

Downward Parabola

Simplifying gives:

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Time of flight - t_f $\Rightarrow t = ?, y = 0$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

(a)
$$v = 0$$

(a)
$$v = 0$$

(b)
$$v_x = 0$$

(a)
$$v = 0$$

(b)
$$v_x = 0$$

(c)
$$v_y = 0$$

At a projectile's maximum height, which of the following is a true statement?

(a)
$$v = 0$$

(b)
$$v_x = 0$$

(c)
$$v_y = 0$$

(d) All of the above

At a projectile's maximum height, which of the following is a true statement?

(a)
$$v = 0$$

(c)
$$v_y = 0$$

(d) All of the above

At a projectile's maximum height, which of the following is a true statement?

(a)
$$v = 0$$

(c)
$$v_y = 0$$

(d) All of the above

(a)
$$v = 0$$

$$v_x = v_{o,x} \neq 0$$

(c)
$$v_y = 0$$

Clicker Quiz

At a projectile's maximum height, which of the following is a true statement?

$$\boxed{0} v = \sqrt{v_x^2 + v_y^2 \neq 0}$$

$$v_x = v_{o,x} \neq 0$$

(c)
$$v_y = 0$$

Clicker Quiz

At a projectile's maximum height, which of the following is a true statement?

$$v_x = v_{o,x} \neq 0$$

(c)
$$v_y = 0$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Time of flight - t_f $\Rightarrow t =?, y = 0$ Maximum Height - y_{max}

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Time of flight - t_f

$$\Rightarrow t = ?, y = 0$$

Maximum Height - y_{max}

$$\Rightarrow y = ?, v_y = 0$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Time of flight - t_f

$$\Rightarrow t = ?, y = 0$$

Maximum Height - y_{max}

$$\Rightarrow y = ?, v_y = 0$$

Range - R

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Time of flight - t_f

$$\Rightarrow t = ?, y = 0$$

Maximum Height - y_{max}

$$\Rightarrow y = ?, v_y = 0$$

Range - R

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Time of flight - t_f

$$\Rightarrow t = ?, y = 0$$

Maximum Height - y_{max}

$$\Rightarrow y = ?, v_y = 0$$

Range - R

$$\Rightarrow x = ?, t = t_f$$

$$y = y_o + \tan \alpha (x - x_o) - \frac{g(x - x_o)^2}{2v_o^2 \cos^2 \alpha}$$

Time of flight - t_f

$$\Rightarrow t = ?, y = 0$$

Maximum Height - y_{max}

$$\Rightarrow y = ?, v_y = 0$$

Range - R

$$\Rightarrow x = ?, t = t_f$$

Warning: Book Equations

only for
$$y_o = y = 0$$

Dynamics

Dynamics - Why objects move.

Dynamics

Dynamics - Why objects move.

Sir Isaac Newton (1642-1727)
British Physicist, In 1687 he
published the *Philosophiæ Naturalis Principia Mathematica*. The *Principia*details how all motion can be
explained by one of three
simple statements = Newton's
Three Laws of Motion.

These three laws are still in use; however, they need modification in two situations:

These three laws are still in use; however, they need modification in two situations:

When an object's velocity approaches the speed of light

These three laws are still in use; however, they need modification in two situations:

- When an object's velocity approaches the speed of light
 - Einstein's theory of relativity.

These three laws are still in use; however, they need modification in two situations:

- When an object's velocity approaches the speed of light
 - Einstein's theory of relativity.

Motion of atomic-sized objects

These three laws are still in use; however, they need modification in two situations:

- When an object's velocity approaches the speed of light
 - Einstein's theory of relativity.

Motion of atomic-sized objects - Quantum Mechanics (Also started by Einstein).

Underlying all three of Newton's Laws is the concept of force.

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

Contact Forces - Two objects in contact.

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

- Contact Forces Two objects in contact.
- Long-range Forces Act at a distance. Examples = gravity, magnetism.

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

- Contact Forces Two objects in contact.
- Long-range Forces Act at a distance. Examples = gravity, magnetism.

Weight - $\overrightarrow{\mathbf{W}}$, Force on an object due to gravity.

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

- Contact Forces Two objects in contact.
- Long-range Forces Act at a distance. Examples = gravity, magnetism.

Weight - $\overrightarrow{\mathbf{W}}$, Force on an object due to gravity.

Unit of Force:

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

- Contact Forces Two objects in contact.
- Long-range Forces Act at a distance. Examples = gravity, magnetism.

Weight - $\overrightarrow{\mathbf{W}}$, Force on an object due to gravity.

Unit of Force:

U. S. Customary: Pound (lb)

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

- Contact Forces Two objects in contact.
- Long-range Forces Act at a distance. Examples = gravity, magnetism.

Weight - $\overrightarrow{\mathbf{W}}$, Force on an object due to gravity.

Unit of Force:

- U. S. Customary: Pound (lb)
- \bullet S. I.: Newton (N)

Underlying all three of Newton's Laws is the concept of force.

Force - Push or Pull

Two types of forces:

- Contact Forces Two objects in contact.
- Long-range Forces Act at a distance. Examples = gravity, magnetism.

Weight - $\overrightarrow{\mathbf{W}}$, Force on an object due to gravity.

Unit of Force:

- U. S. Customary: Pound (lb)
- S. I.: Newton (N), 1N = 0.22 lb (on Earth)

Usually there is more than one force acting on an object.

Superposition - The net result of two or more forces is given by the vector sum.

$$\Sigma \overrightarrow{\mathbf{F}} = \overrightarrow{\mathbf{F}}_1 + \overrightarrow{\mathbf{F}}_2 + \overrightarrow{\mathbf{F}}_3 \dots$$

