February 8, Week 4

Today: Chapter 3, Projectile Motion

Homework \#1 now in boxes.
No New homework assignment this week. Homework Solutions posted Thursday morning. Chapter 2 practice problems on Mastering Physics.

Exam \#1 Friday, February 10.

Practice Exam available on website. Review Session, Thursday, 7:30 PM in room 114 of Regener Hall.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.

Projectile Equations

General Equations

$v_{x}=v_{o, x}+a_{x} t$	$v_{y}=v_{o, y}+a_{y} t$
$x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}$	$y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}$

Projectile Equations

General Equations

$v_{x}=v_{o, x}+a_{x} t$	$v_{y}=v_{o, y}+a_{y} t$
$x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}$	$y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}$

Gravity pulls straight down, so it causes acceleration in the y-direction only.

Projectile Equations

General Equations

$v_{x}=v_{o, x}+a_{x} t$	$v_{y}=v_{o, y}+a_{y} t$
$x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}$	$y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}$

Gravity pulls straight down, so it causes acceleration in the y-direction only.

$$
\left.a_{x}=0, a_{y}=-g \quad \text { (Down is negative }\right)
$$

Projectile Equations II

Substituting $a_{x}=0, a_{y}=-g$ into our general equations, gives us the equations of motion for a projectile.

General Equations

$v_{x}=v_{o, x}+a_{x} t$	$v_{y}=v_{o, y}+a_{y} t$
$x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}$	$y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}$

Projectile Equations II

Substituting $a_{x}=0, a_{y}=-g$ into our general equations, gives us the equations of motion for a projectile.

General Equations

$v_{x}=v_{o, x}$	$v_{y}=v_{o, y}+a_{y} t$
$x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}$	$y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}$

Projectile Equations II

Substituting $a_{x}=0, a_{y}=-g$ into our general equations, gives us the equations of motion for a projectile.

General Equations

$v_{x}=v_{o, x}$	$v_{y}=v_{o, y}+a_{y} t$
$x=x_{o}+v_{o, x} t$	$y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}$

Projectile Equations II

Substituting $a_{x}=0, a_{y}=-g$ into our general equations, gives us the equations of motion for a projectile.

General Equations

$v_{x}=v_{o, x}$	$v_{y}=v_{o, y}-g t$
$x=x_{o}+v_{o, x} t$	$y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}$

Projectile Equations II

Substituting $a_{x}=0, a_{y}=-g$ into our general equations, gives us the equations of motion for a projectile.

Projectile Equations

$v_{x}=v_{o, x}$	$v_{y}=v_{o, y}+g t$
$x=x_{o}+v_{o, x} t$	$y=y_{o}+v_{o, y} t-\frac{1}{2} g t^{2}$

Horizontal Launch

The equations of motion simplify even further in the case the projectile is launched horizontally.

Horizontal Launch

The equations of motion simplify even further in the case the projectile is launched horizontally.

$$
\begin{aligned}
& \overrightarrow{\mathrm{v}}_{o} \text { has no } \\
& \text { vertical component } \\
& \Rightarrow v_{o, x}=v_{o}, v_{o, y}=0
\end{aligned}
$$

Horizontal Launch

The equations of motion simplify even further in the case the projectile is launched horizontally.

$\overrightarrow{\mathrm{v}}_{o}$ has no
vertical component
$\Rightarrow v_{o, x}=v_{o}, v_{o, y}=0$

Projectile Equations

$$
\begin{array}{|l|l|}
\hline v_{x}=v_{o, x} & v_{y}=v_{o, y}-g t \\
\hline x=x_{o}+v_{o, x} t & y=y_{o}+v_{o, y} t-\frac{1}{2} g t^{2} \\
\hline
\end{array}
$$

Horizontal Launch

The equations of motion simplify even further in the case the projectile is launched horizontally.

$\overrightarrow{\mathrm{v}}_{o}$ has no
vertical component
$\Rightarrow v_{o, x}=v_{o}, v_{o, y}=0$

Projectile Equations

$v_{x}=v_{o}$	$v_{y}=v_{o, y}-g t$
$x=x_{o}+v_{o, x} t$	$y=y_{o}+v_{o, y} t-\frac{1}{2} g t^{2}$

Horizontal Launch

The equations of motion simplify even further in the case the projectile is launched horizontally.

$\overrightarrow{\mathrm{V}}_{o}$ has no
vertical component
$\Rightarrow v_{o, x}=v_{o}, v_{o, y}=0$

Projectile Equations

$v_{x}=v_{o}$	$v_{y}=v_{o, y}-g t$
$x=x_{o}+v_{o} t$	$y=y_{o}+v_{o, y} t-\frac{1}{2} g t^{2}$

Horizontal Launch

The equations of motion simplify even further in the case the projectile is launched horizontally.

$\overrightarrow{\mathrm{v}}_{o}$ has no
vertical component
$\Rightarrow v_{o, x}=v_{o}, v_{o, y}=0$

Projectile Equations

$v_{x}=v_{o}$	$v_{y}=-g t$
$x=x_{o}+v_{o} t$	$y=y_{o}+v_{o, y} t-\frac{1}{2} g t^{2}$

Horizontal Launch

The equations of motion simplify even further in the case the projectile is launched horizontally.

$\overrightarrow{\mathrm{v}}_{o}$ has no
vertical component
$\Rightarrow v_{o, x}=v_{o}, v_{o, y}=0$

Projectile Equations

$v_{x}=v_{o}$	$v_{y}=-g t$
$x=x_{o}+v_{o} t$	$y=y_{o}-\frac{1}{2} g t^{2}$

General Launch Angle

$v_{o}=$ launch speed
$\alpha=$ launch angle

General Launch Angle

$v_{o}=$ launch speed
$\alpha=$ launch angle

No shortcuts here!

$$
v_{o, x}=v_{o} \cos \alpha, \quad v_{o, y}=v_{o} \sin \alpha
$$

General Launch Equations

Projectile Equations

$v_{x}=v_{o, x}$	$v_{y}=v_{o, y}-g t$
$x=x_{o}+v_{o, x} t$	$y=y_{o}+v_{o, y} t-\frac{1}{2} g t^{2}$
$v_{o, x}=v_{o} \cos \alpha$	$v_{o, y}=v_{o} \sin \alpha$

