February 8, Week 4

Today: Chapter 3, Projectile Motion

Homework #1 now in boxes.

No New homework assignment this week. Homework Solutions posted Thursday morning. Chapter 2 practice problems on Mastering Physics.

Exam #1 Friday, February 10.

Practice Exam available on website. Review Session, Thursday, 7:30 PM in room 114 of Regener Hall.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.

General Equations	
$v_x = v_{o,x} + a_x t$	$v_y = v_{o,y} + a_y t$
$x = x_o + v_{o,x}t + \frac{1}{2}a_xt^2$	$y = y_o + v_{o,y}t + \frac{1}{2}a_yt^2$

Gravity pulls straight down, so it causes acceleration in the y-direction only.

Gravity pulls straight down, so it causes acceleration in the y-direction only.

$$a_x = 0, a_y = -g$$
 (Down is negative)

Substituting $a_x = 0$, $a_y = -g$ into our general equations, gives us the equations of motion for a projectile.

General Equations $v_x = v_{o,x} + a_x t$ $v_y = v_{o,y} + a_y t$ $x = x_o + v_{o,x}t + \frac{1}{2}a_x t^2$ $y = y_o + v_{o,y}t + \frac{1}{2}a_y t^2$

General Equations	
$v_x = v_{o,x}$	$v_y = v_{o,y} + a_y t$
$x = x_o + v_{o,x}t$	$y = y_o + v_{o,y}t + \frac{1}{2}a_yt^2$

General Equations	
$v_x = v_{o,x}$	$v_y = v_{o,y} - gt$
$x = x_o + v_{o,x}t$	$y = y_o + v_{o,y}t + \frac{1}{2}a_yt^2$

Projectile Equations	
$v_x = v_{o,x}$	$v_y = v_{o,y} + gt$
$x = x_o + v_{o,x}t$	$y = y_o + v_{o,y}t - \frac{1}{2}gt^2$

The equations of motion simplify even further in the case the projectile is launched horizontally.

The equations of motion simplify even further in the case the projectile is launched horizontally.

 $\overrightarrow{\mathbf{v}}_{o}$ has no vertical component $\Rightarrow v_{o,x} = v_o, v_{o,y} = 0$

The equations of motion simplify even further in the case the projectile is launched horizontally.

Projectile Equations

$v_x = v_{o,x}$	$v_y = v_{o,y} - gt$
$x = x_o + v_{o,x}t$	$y = y_o + v_{o,y}t - \frac{1}{2}gt^2$

The equations of motion simplify even further in the case the projectile is launched horizontally.

Projectile Equations

$v_x = v_o$	$v_y = v_{o,y} - gt$
$x = x_o + v_{o,x}t$	$y = y_o + v_{o,y}t - \frac{1}{2}gt^2$

The equations of motion simplify even further in the case the projectile is launched horizontally.

Projectile Equations $v_x = v_o$ $v_y = v_{o,y} - gt$ $x = x_o + v_o t$ $y = y_o + v_{o,y}t - \frac{1}{2}gt^2$

The equations of motion simplify even further in the case the projectile is launched horizontally.

Projectile Equations

$v_x = v_o$	$v_y = -gt$
$x = x_o + v_o t$	$y = y_o + v_{o,y}t - \frac{1}{2}gt^2$

The equations of motion simplify even further in the case the projectile is launched horizontally.

 $\overrightarrow{\mathbf{v}}_{o}$ has no vertical component $\Rightarrow v_{o,x} = v_o, v_{o,y} = 0$

Projectile Equations $v_x = v_o$ $v_y = -gt$ $x = x_o + v_o t$ $y = y_o - \frac{1}{2}gt^2$

General Launch Angle

 $v_o =$ launch speed $\alpha =$ launch angle

General Launch Angle

$$v_o =$$
launch speed
 $\alpha =$ launch angle

No shortcuts here!

$$v_{o,x} = v_o \cos \alpha, \quad v_{o,y} = v_o \sin \alpha$$

General Launch Equations

Projectile Equations	
$v_x = v_{o,x}$	$v_y = v_{o,y} - gt$
$x = x_o + v_{o,x}t$	$y = y_o + v_{o,y}t - \frac{1}{2}gt^2$
$v_{o,x} = v_o \cos \alpha$	$v_{o,y} = v_o \sin \alpha$