February 6, Week 4

Today: Chapter 3, Two-Dimensional Motion
Homework Assignment \#3 due Tonight Mastering Physics: 6 problems. Written Problem: 2.88.

Homework \#1 now in boxes.
No New homework assignment this week.
Exam \#1 Friday, February 10.
Practice Exam available on website.
Review Session, Thursday, 7:30 PM.
Chapter 2 practice problems on Mastering Physics.

Review

- (x, y)

Review

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}=x \hat{\mathbf{\imath}}+y \hat{\boldsymbol{\jmath}} \\
& \Rightarrow \text { the position vector } \\
& \text { goes from the } \\
& \text { origin to the object's } \\
& \text { location. }
\end{aligned}
$$

Review

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}} \\
& \Rightarrow \text { the position vector } \\
& \text { goes from the } \\
& \text { origin to the object's } \\
& \text { location. }
\end{aligned}
$$

Final Position -

Review

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}} \\
& \Rightarrow \text { the position vector } \\
& \text { goes from the } \\
& \text { origin to the object's } \\
& \text { location. }
\end{aligned}
$$

Final Position

$$
\Delta \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

Review II

Velocity = Speed and direction.

$$
\overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{r}}}{d t}
$$

Review II

Velocity = Speed and direction.

Review II

Velocity = Speed and direction.

Review II

Velocity = Speed and direction.

Review II

Velocity = Speed and direction.

Review II

Velocity = Speed and direction.

Review III

An acceleration in an arbitrary direction will cause a change in both speed and direction.

Review III

An acceleration in an arbitrary direction will cause a change in both speed and direction.

Use coordinates parallel and perpendicular to \vec{v}

Review III

An acceleration in an arbitrary direction will cause a change in both speed and direction.

Split into components parallel and perpendicular to \vec{v}

Review III

An acceleration in an arbitrary direction will cause a change in both speed and direction.

Split into components parallel and perpendicular to \vec{v}
$\overrightarrow{\mathrm{a}}_{\|}$changes speed $\overrightarrow{\mathrm{a}}_{\perp}$ changes direction

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown.

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Clicker Quiz

A mass slides up a ramp (against gravity) as shown. At the point labeled A which of the following choices is a possible acceleration vector?

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Uniform Circular Motion

An application of this idea is the problem of an object going around a circle with constant speed.
For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

As the object goes around the circle its direction changes

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

Centripetal Acceleration

The object's acceleration must always be perpendicular to the velocity.

\vec{v}, \vec{a}
Centripetal Acceleration - $\overrightarrow{\mathbf{a}}_{\text {rad }}$
The acceleration towards
the center necessary
for circular motion

Centripetal Acceleration II

It can be shown: $a_{\text {rad }}=\frac{v^{2}}{r}$
(See textbook for derivation)

Centripetal Acceleration II

It can be shown: $a_{\text {rad }}=\frac{v^{2}}{r}$
(See textbook for derivation)

We can also write $a_{r a d}$ in terms of the motion's period (T).

Centripetal Acceleration II

It can be shown: $a_{\text {rad }}=\frac{v^{2}}{r}$
(See textbook for derivation)

We can also write $a_{\text {rad }}$ in terms of the motion's period (T).
Period - The time for one revolution (once around the circle).

Centripetal Acceleration II

It can be shown: $a_{\text {rad }}=\frac{v^{2}}{r}$
(See textbook for derivation)

We can also write $a_{\text {rad }}$ in terms of the motion's period (T).
Period - The time for one revolution (once around the circle).

$$
T=\frac{2 \pi r}{v} \Rightarrow a_{r a d}=\frac{4 \pi^{2} r}{T^{2}}
$$

2D Kinematics

In numerical problems, each component is solved for separately.

2D Kinematics

In numerical problems, each component is solved for separately.

$$
\overrightarrow{\mathbf{a}}=a_{x} \hat{\boldsymbol{\imath}}+a_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d v_{x}}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d v_{y}}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

2D Kinematics

In numerical problems, each component is solved for separately.

$$
\overrightarrow{\mathbf{a}}=a_{x} \hat{\boldsymbol{\imath}}+a_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d v_{x}}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d v_{y}}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

For Constant Acceleration:

$$
v_{x}=v_{o, x}+a_{x} t
$$

2D Kinematics

In numerical problems, each component is solved for separately.

$$
\overrightarrow{\mathbf{a}}=a_{x} \hat{\boldsymbol{\imath}}+a_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d v_{x}}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d v_{y}}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

For Constant Acceleration:

$$
v_{y}=v_{o, y}+a_{y} t
$$

2D Kinematics

In numerical problems, each component is solved for separately.

$$
\overrightarrow{\mathbf{a}}=a_{x} \hat{\boldsymbol{\imath}}+a_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d v_{x}}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d v_{y}}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

For Constant Acceleration:

$$
\begin{aligned}
& v_{x}=v_{o, x}+a_{x} t \\
& v_{y}=v_{o, y}+a_{y} t
\end{aligned}
$$

Initial Velocity Vector: $\overrightarrow{\mathbf{v}}_{o}=v_{o, x} \hat{\boldsymbol{\imath}}+v_{o, y} \hat{\boldsymbol{\jmath}}$

2D Kinematics II

$$
\overrightarrow{\mathrm{v}}=v_{x} \hat{\boldsymbol{\imath}}+v_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d x}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d y}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

2D Kinematics II

$$
\overrightarrow{\mathbf{v}}=v_{x} \hat{\boldsymbol{\imath}}+v_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d x}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d y}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

For Constant Acceleration:

$$
x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}
$$

2D Kinematics II

$$
\overrightarrow{\mathbf{v}}=v_{x} \hat{\boldsymbol{\imath}}+v_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d x}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d y}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

For Constant Acceleration:

$$
y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}
$$

2D Kinematics II

$$
\overrightarrow{\mathbf{v}}=v_{x} \hat{\boldsymbol{\imath}}+v_{y} \hat{\boldsymbol{\jmath}}=\left(\frac{d x}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d y}{d t}\right) \hat{\boldsymbol{\jmath}}
$$

For Constant Acceleration:

$$
\begin{aligned}
& x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2} \\
& y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}
\end{aligned}
$$

Position Vector: $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}$
Initial Position Vector: $\overrightarrow{\mathbf{r}}_{o}=x_{o} \hat{\imath}+y_{o} \hat{\boldsymbol{\jmath}}$

Example

$$
\begin{aligned}
& x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}, \quad v_{x}=v_{o, x}+a_{x} t \\
& y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}, \quad v_{y}=v_{o, y}+a_{y} t
\end{aligned}
$$

Example: A car is traveling east at $20 \mathrm{~m} / \mathrm{s}$ when it is hit by a truck going north. If the collision causes a constant acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ to the north, and the car's brakes a constant deceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ to the west, where is the car located after 3s?

Example

$$
\begin{aligned}
& x=x_{o}+v_{o, x} t+\frac{1}{2} a_{x} t^{2}, \quad v_{x}=v_{o, x}+a_{x} t \\
& y=y_{o}+v_{o, y} t+\frac{1}{2} a_{y} t^{2}, \quad v_{y}=v_{o, y}+a_{y} t
\end{aligned}
$$

Example: A car is traveling east at $20 \mathrm{~m} / \mathrm{s}$ when it is hit by a truck going north. If the collision causes a constant acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ to the north, and the car's brakes a constant deceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ to the west, where is the car located after 3s?

- What direction is the car moving in at that point in time?

