February 3, Week 3

Today: Chapter 3, Two-Dimensional Motion
Homework Assignment \#3 due February 6
Mastering Physics: 3 Mastering Physics problems, 2.77, 2.85, 2.93.

Written Problem: 2.88.

Exam \#1 Friday, February 10.
Practice Exam available on website.
Chapter 2 practice problems now available on Mastering Physics.

Clicker Poll

Which of the following best describes your situation?

Clicker Poll

Which of the following best describes your situation?
(a) I would like a review session at 7:30PM on Tuesday, February 7.

Clicker Poll

Which of the following best describes your situation?
(a) I would like a review session at 7:30PM on Tuesday, February 7.
(b) I would like a review session at 7:30PM on Thursday, February 9.

Clicker Poll

Which of the following best describes your situation?
(a) I would like a review session at 7:30PM on Tuesday, February 7.
(b) I would like a review session at 7:30PM on Thursday, February 9.
(c) I cannot make either of these times for a review session but would like to have one.

Clicker Poll

Which of the following best describes your situation?
(a) I would like a review session at 7:30PM on Tuesday, February 7.
(b) I would like a review session at 7:30PM on Thursday, February 9.
(c) I cannot make either of these times for a review session but would like to have one.
(d) I have no desire for a review session but am clicking in order to get my three clicker-quiz points.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D (and 3D), this means we have to know the components of the position, velocity, and acceleration vectors.

The Position Vector

In two-dimensional, cartesian coordinates, objects are located at the point (x, y).

- (x, y)

The Position Vector

In two-dimensional, cartesian coordinates, objects are located at the point (x, y).

The Position Vector

In two-dimensional, cartesian coordinates, objects are located at the point (x, y).

Same procedure as finding
 components!

The Position Vector

In two-dimensional, cartesian coordinates, objects are located at the point (x, y).

The Position Vector

In two-dimensional, cartesian coordinates, objects are located at the point (x, y).

$$
\overrightarrow{\mathbf{r}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}
$$

The Position Vector

In two-dimensional, cartesian coordinates, objects are located at the point (x, y).

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}=x \hat{\imath}+y \hat{\boldsymbol{\jmath}} \\
& \Rightarrow \text { the position vector } \\
& \text { goes from the } \\
& \text { origin to the object's } \\
& \text { location. }
\end{aligned}
$$

The Position Vector

In two-dimensional, cartesian coordinates, objects are located at the point (x, y).

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}=x \hat{\mathbf{\imath}}+y \hat{\boldsymbol{\jmath}} \\
& \Rightarrow \text { the position vector } \\
& \text { goes from the } \\
& \text { origin to the object's } \\
& \text { location. }
\end{aligned}
$$

Distance is given by the magnitude of the position vector $\Rightarrow r=\sqrt{x^{2}+y^{2}}$.

Displacement

Displacement has the same definition but is now a vector subtraction.

$$
\Delta \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

Displacement

Displacement has the same definition but is now a vector subtraction.

$$
\Delta \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

This simply means that

$$
\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{r}}_{1}+\Delta \overrightarrow{\mathrm{r}}
$$

Displacement

Displacement has the same definition but is now a vector subtraction.

$$
\Delta \overrightarrow{\mathbf{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

This simply means that

$$
\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{r}}_{1}+\Delta \overrightarrow{\mathrm{r}}
$$

Displacement

Displacement has the same definition but is now a vector subtraction.

$$
\Delta \overrightarrow{\mathbf{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

This simply means that

$$
\overrightarrow{\mathbf{r}}_{2}=\overrightarrow{\mathbf{r}}_{1}+\Delta \overrightarrow{\mathbf{r}}
$$

Final Position
-

Displacement

Displacement has the same definition but is now a vector subtraction.

$$
\Delta \overrightarrow{\mathbf{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

This simply means that

$$
\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{r}}_{1}+\Delta \overrightarrow{\mathrm{r}}
$$

Final Position
(nitial Position

Displacement

Displacement has the same definition but is now a vector subtraction.

$$
\Delta \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

This simply means that

$$
\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{r}}_{1}+\Delta \overrightarrow{\mathrm{r}}
$$

Final Position

Displacement

Displacement has the same definition but is now a vector subtraction.

$$
\Delta \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}
$$

This simply means that

$$
\overrightarrow{\mathbf{r}}_{2}=\overrightarrow{\mathbf{r}}_{1}+\Delta \overrightarrow{\mathbf{r}}
$$

Final Position

Graphical addition shows that

$$
\overrightarrow{\mathbf{r}}_{1}+\Delta \overrightarrow{\mathbf{r}}=\overrightarrow{\mathrm{r}}_{2}
$$

Velocity

Velocity in 2D remains how fast (speed) and direction of motion.

Velocity

Velocity in 2D remains how fast (speed) and direction of motion.

$$
\overrightarrow{\mathbf{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{\overrightarrow{\mathbf{r}}_{2}-\overrightarrow{\mathbf{r}}_{1}}{t_{2}-t_{1}}
$$

Velocity

Velocity in 2D remains how fast (speed) and direction of motion.

$$
\overrightarrow{\mathrm{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{\overrightarrow{\mathbf{r}}_{2}-\overrightarrow{\mathbf{r}}_{1}}{t_{2}-t_{1}} \text { with } \overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{r}}}{d t}
$$

Velocity

Velocity in 2D remains how fast (speed) and direction of motion.

$$
\overrightarrow{\mathbf{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{\overrightarrow{\mathbf{r}}_{2}-\overrightarrow{\mathbf{r}}_{1}}{t_{2}-t_{1}} \text { with } \overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{r}}}{d t}
$$

To take the derivative of a vector, we take the derivative of each component separately!

Velocity

Velocity in 2D remains how fast (speed) and direction of motion.

$$
\overrightarrow{\mathbf{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{\overrightarrow{\mathbf{r}}_{2}-\overrightarrow{\mathbf{r}}_{1}}{t_{2}-t_{1}} \text { with } \overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{r}}}{d t}
$$

To take the derivative of a vector, we take the derivative of each component separately!

$$
\overrightarrow{\mathbf{r}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}
$$

Velocity

Velocity in 2D remains how fast (speed) and direction of motion.

$$
\overrightarrow{\mathbf{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{\overrightarrow{\mathbf{r}}_{2}-\overrightarrow{\mathbf{r}}_{1}}{t_{2}-t_{1}} \text { with } \overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{r}}}{d t}
$$

To take the derivative of a vector, we take the derivative of each component separately!

$$
\overrightarrow{\mathbf{r}}=x \hat{\imath}+y \hat{\jmath}
$$

In terms of components:

$$
\Delta \overrightarrow{\mathbf{r}}=\left(x_{2}-x_{1}\right) \hat{\imath}+\left(y_{2}-y_{1}\right) \hat{\boldsymbol{\jmath}}=\Delta x \hat{\boldsymbol{\imath}}+\Delta y \hat{\boldsymbol{\jmath}}
$$

Velocity II

$$
\overrightarrow{\mathrm{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\left(\frac{\Delta x}{\Delta t}\right) \hat{\imath}+\left(\frac{\Delta y}{\Delta t}\right) \hat{\boldsymbol{\jmath}}
$$

Velocity II

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\left(\frac{\Delta x}{\Delta t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{\Delta y}{\Delta t}\right) \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t} \hat{\boldsymbol{\imath}}+\frac{\Delta y}{\Delta t} \hat{\boldsymbol{\jmath}}\right)=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t}\right) \hat{\boldsymbol{\imath}}+\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta y}{\Delta t}\right) \hat{\boldsymbol{\jmath}}
\end{gathered}
$$

Velocity II

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\left(\frac{\Delta x}{\Delta t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{\Delta y}{\Delta t}\right) \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t} \hat{\boldsymbol{\imath}}+\frac{\Delta y}{\Delta t} \hat{\boldsymbol{\jmath}}\right)=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t}\right) \hat{\boldsymbol{\imath}}+\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta y}{\Delta t}\right) \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\mathbf{v}}=\left(\frac{d x}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d y}{d t}\right) \hat{\boldsymbol{\jmath}}=v_{x} \hat{\boldsymbol{\imath}}+v_{y} \hat{\boldsymbol{\jmath}}
\end{gathered}
$$

Velocity II

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\left(\frac{\Delta x}{\Delta t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{\Delta y}{\Delta t}\right) \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t} \hat{\boldsymbol{\imath}}+\frac{\Delta y}{\Delta t} \hat{\boldsymbol{\jmath}}\right)=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t}\right) \hat{\boldsymbol{\imath}}+\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta y}{\Delta t}\right) \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\mathbf{v}}=\left(\frac{d x}{d t}\right) \hat{\boldsymbol{\imath}}+\left(\frac{d y}{d t}\right) \hat{\boldsymbol{\jmath}}=v_{x} \hat{\imath}+v_{y} \hat{\boldsymbol{\jmath}}
\end{gathered}
$$

Motion in
x direction.

Motion in
y direction.

Velocity II

Velocity II

Velocity II

Velocity II

Velocity II

Velocity II

Velocity II

Velocity II

Speed

Speed is the magnitude of the velocity vector.

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Acceleration

$$
\overrightarrow{\mathbf{a}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{\overrightarrow{\mathbf{v}}_{2}-\overrightarrow{\mathbf{v}}_{1}}{t_{2}-t_{1}} \text { with } \overrightarrow{\mathbf{a}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{v}}}{d t}
$$

Acceleration

$$
\overrightarrow{\mathbf{a}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{\overrightarrow{\mathbf{v}}_{2}-\overrightarrow{\mathbf{v}}_{1}}{t_{2}-t_{1}} \text { with } \overrightarrow{\mathbf{a}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{v}}}{d t}
$$

Since \vec{a} is related to the change in \vec{v}, either a change in speed or direction involves an acceleration.

Acceleration

$$
\overrightarrow{\mathbf{a}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{\overrightarrow{\mathbf{v}}_{2}-\overrightarrow{\mathbf{v}}_{1}}{t_{2}-t_{1}} \text { with } \overrightarrow{\mathbf{a}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{v}}}{d t}
$$

Since \vec{a} is related to the change in \vec{v}, either a change in speed or direction involves an acceleration.

While \vec{a} can be written in terms of components, its direction relative to \vec{v} is most important in describing its effect upon motion.

Direction of Acceleration

$$
\overrightarrow{\mathbf{a}}=\frac{d \overrightarrow{\mathbf{v}}}{d t} \Rightarrow d \overrightarrow{\mathbf{v}} \text { in same direction as } \overrightarrow{\mathbf{a}}
$$

Direction of Acceleration

$$
\overrightarrow{\mathbf{a}}=\frac{d \overrightarrow{\mathbf{v}}}{d t} \Rightarrow d \overrightarrow{\mathbf{v}} \text { in same direction as } \overrightarrow{\mathbf{a}}
$$

If we cheat a little, we can get away with

$$
d \overrightarrow{\mathbf{v}} \approx \Delta \overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}} \text { gives direction of } \Delta \overrightarrow{\mathbf{v}}
$$

Direction of Acceleration

$$
\overrightarrow{\mathbf{a}}=\frac{d \overrightarrow{\mathbf{v}}}{d t} \Rightarrow d \overrightarrow{\mathbf{v}} \text { in same direction as } \overrightarrow{\mathbf{a}}
$$

If we cheat a little, we can get away with

$$
d \overrightarrow{\mathrm{v}} \approx \Delta \overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}} \text { gives direction of } \Delta \overrightarrow{\mathrm{v}}
$$

Direction of Acceleration

$$
\overrightarrow{\mathbf{a}}=\frac{d \overrightarrow{\mathbf{v}}}{d t} \Rightarrow d \overrightarrow{\mathbf{v}} \text { in same direction as } \overrightarrow{\mathbf{a}}
$$

If we cheat a little, we can get away with

$$
d \overrightarrow{\mathrm{v}} \approx \Delta \overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}} \text { gives direction of } \Delta \overrightarrow{\mathrm{v}}
$$

Direction of Acceleration

$$
\overrightarrow{\mathbf{a}}=\frac{d \overrightarrow{\mathbf{v}}}{d t} \Rightarrow d \overrightarrow{\mathbf{v}} \text { in same direction as } \overrightarrow{\mathrm{a}}
$$

If we cheat a little, we can get away with

$$
d \overrightarrow{\mathrm{v}} \approx \Delta \overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}} \text { gives direction of } \Delta \overrightarrow{\mathrm{v}}
$$

$$
\begin{gathered}
\Delta \vec{v} \text { in } \\
\text { same direction } \\
\text { as } \vec{a}
\end{gathered}
$$

Direction of Acceleration

$$
\overrightarrow{\mathbf{a}}=\frac{d \overrightarrow{\mathbf{v}}}{d t} \Rightarrow d \overrightarrow{\mathbf{v}} \text { in same direction as } \overrightarrow{\mathrm{a}}
$$

If we cheat a little, we can get away with

$$
d \overrightarrow{\mathrm{v}} \approx \Delta \overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}} \text { gives direction of } \Delta \overrightarrow{\mathrm{v}}
$$

$$
\begin{gathered}
\Delta \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{2}-\overrightarrow{\mathrm{v}}_{1} \\
\Rightarrow \\
\overrightarrow{\mathrm{v}}_{1}+\Delta \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{2}
\end{gathered}
$$

Direction of Acceleration

$$
\overrightarrow{\mathrm{a}}=\frac{d \overrightarrow{\mathrm{v}}}{d t} \Rightarrow d \overrightarrow{\mathrm{v}} \text { in same direction as } \overrightarrow{\mathrm{a}}
$$

If we cheat a little, we can get away with

$$
d \overrightarrow{\mathbf{v}} \approx \Delta \overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}} \text { gives direction of } \Delta \overrightarrow{\mathbf{v}}
$$

Direction of Acceleration

$$
\overrightarrow{\mathrm{a}}=\frac{d \overrightarrow{\mathrm{v}}}{d t} \Rightarrow d \overrightarrow{\mathrm{v}} \text { in same direction as } \overrightarrow{\mathrm{a}}
$$

If we cheat a little, we can get away with

$$
d \overrightarrow{\mathbf{v}} \approx \Delta \overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}} \text { gives direction of } \Delta \overrightarrow{\mathbf{v}}
$$

$$
\overrightarrow{\mathrm{v}}_{1}+\Delta \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{2}
$$

Parallel Acceleration

When \vec{a} is parallel to \vec{v}, speed changes but direction does not.

Parallel Acceleration

When \vec{a} is parallel to \vec{v}, speed changes but direction does not.

Parallel Acceleration

When \vec{a} is parallel to \vec{v}, speed changes but direction does not.

Parallel Acceleration

When \vec{a} is parallel to \vec{v}, speed changes but direction does not.

Parallel Acceleration

When \vec{a} is parallel to \vec{v}, speed changes but direction does not.

Parallel Acceleration

When \vec{a} is parallel to \vec{v}, speed changes but direction does not.

Only a change
in magniutde

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \vec{v} \rightarrow 0$.

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

$$
\begin{gathered}
\text { As } \Delta \overrightarrow{\mathbf{v}} \rightarrow 0 \\
v_{2} \rightarrow v_{1} \\
\text { but } \overrightarrow{\mathbf{v}}_{2} \neq \overrightarrow{\mathbf{v}}_{1}
\end{gathered}
$$

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

$$
\Delta \vec{v}
$$

$$
\begin{gathered}
\text { As } \Delta \overrightarrow{\mathbf{v}} \rightarrow 0 \\
v_{2} \rightarrow v_{1} \\
\text { but } \overrightarrow{\mathbf{v}}_{2} \neq \overrightarrow{\mathbf{v}}_{1}
\end{gathered}
$$

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

$$
\begin{gathered}
\text { As } \Delta \overrightarrow{\mathbf{v}} \rightarrow 0 \\
v_{2} \rightarrow v_{1} \\
\text { but } \overrightarrow{\mathbf{v}}_{2} \neq \overrightarrow{\mathrm{v}}_{1}
\end{gathered}
$$

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \vec{v} \rightarrow 0$.

$$
\begin{gathered}
\text { As } \Delta \overrightarrow{\mathbf{v}} \rightarrow 0 \\
v_{2} \rightarrow v_{1} \\
\text { but } \overrightarrow{\mathbf{v}}_{2} \neq \overrightarrow{\mathbf{v}}_{1}
\end{gathered}
$$

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

Perpendicular Acceleration

When \vec{a} is perpendicular to \vec{v}, direction changes but speed does not.

Here, we can't cheat! We have to take the limit as $\Delta \overrightarrow{\mathrm{v}} \rightarrow 0$.

General Acceleration

An acceleration in an arbitrary direction will change both speed and direction.

General Acceleration

An acceleration in an arbitrary direction will change both speed and direction.

Use coordinates parallel and perpendicular to \vec{v}

General Acceleration

An acceleration in an arbitrary direction will change both speed and direction.

Split \vec{a} into a component parallel to \vec{v}

General Acceleration

An acceleration in an arbitrary direction will change both speed and direction.

Split \vec{a} into a component parallel to \vec{v}

General Acceleration

An acceleration in an arbitrary direction will change both speed and direction.

And a component perpendicular to \vec{v}

General Acceleration

An acceleration in an arbitrary direction will change both speed and direction.

And a component perpendicular to \vec{v}

General Acceleration

An acceleration in an arbitrary direction will change both speed and direction.

$\overrightarrow{\mathrm{a}}_{\|}$changes speed
$\overrightarrow{\mathrm{a}}_{\perp}$ changes direction

