February 1, Week 3

Today: Chapter 1, Vectors

Homework Assignment #3 due February 6 Mastering Physics: 3 Mastering Physics problems, 2.77, 2.85, 2.93. Written Problem: 2.88.

Exam #1 Friday, February 10.

Practice Exam available on website.

<u>Vector</u> - \overrightarrow{A} , Any physical quantity which has a magnitude and direction associated with it.

<u>Vector</u> - \overrightarrow{A} , Any physical quantity which has a magnitude and direction associated with it.

<u>Magnitude</u> - Positive number along with unit that expresses the "amount" of the vector.

<u>Vector</u> - \overrightarrow{A} , Any physical quantity which has a magnitude and direction associated with it.

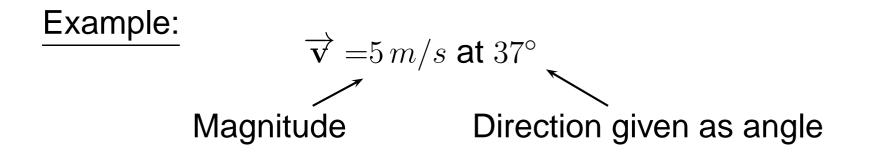
Magnitude - Positive number along with unit that expresses the "amount" of the vector.

Example:

$$\overrightarrow{\mathbf{v}} = 5 m/s$$
 at 37°

<u>Vector</u> - \overrightarrow{A} , Any physical quantity which has a magnitude and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.



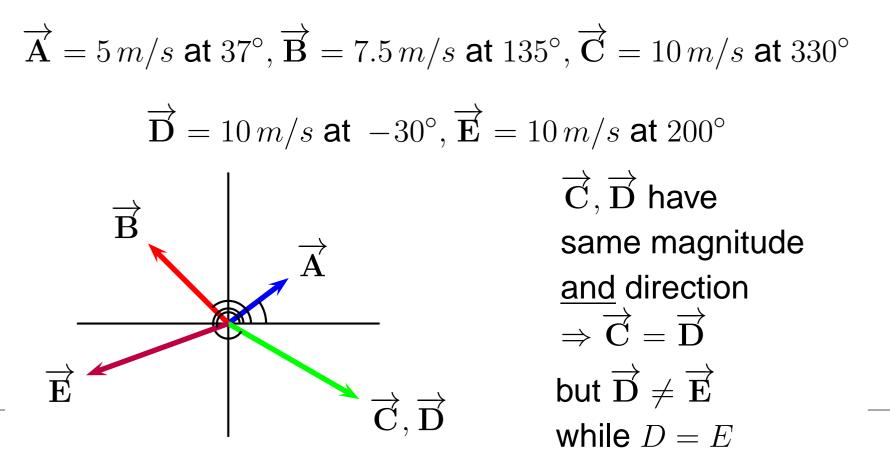
Review Example I

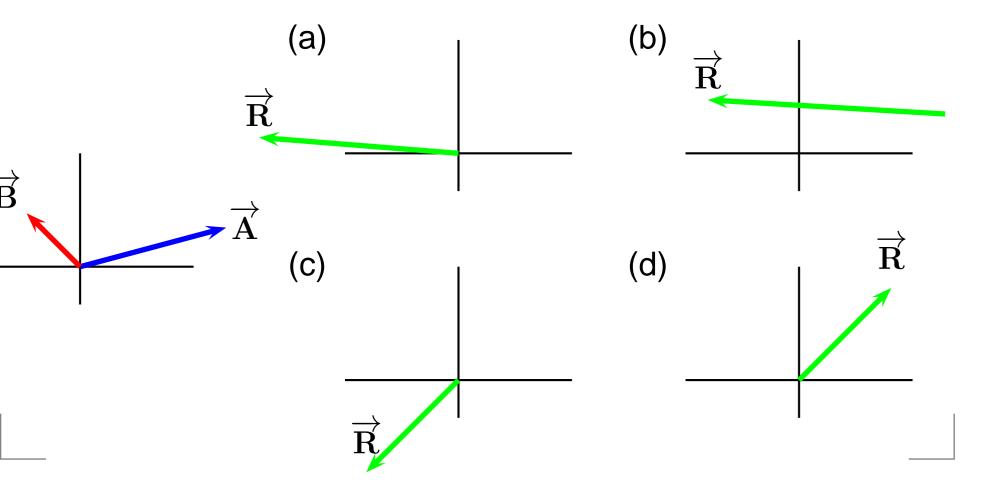
Example: Sketch the following vectors. Start all vectors at the origin. Also, assume all direction are given by the "standard" angle - from the +x-axis.

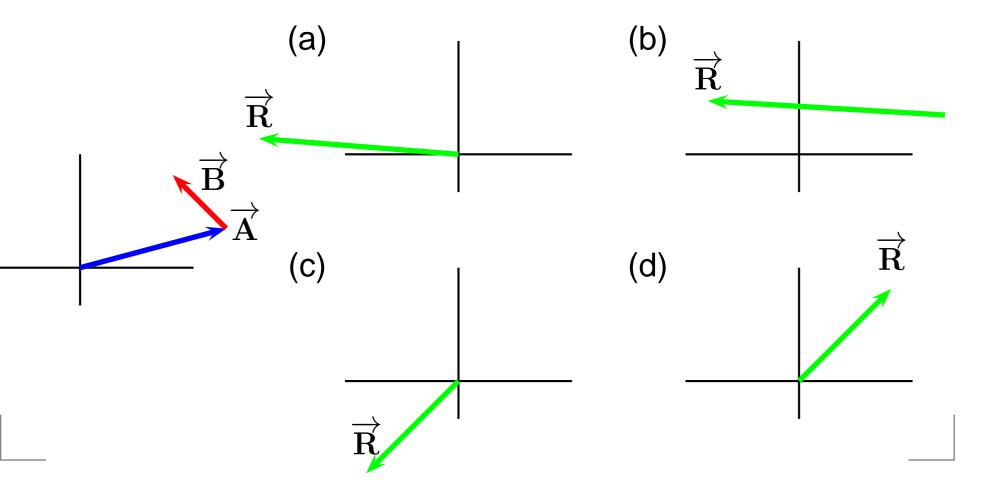
$$\overrightarrow{\mathbf{A}} = 5 m/s$$
 at 37° , $\overrightarrow{\mathbf{B}} = 7.5 m/s$ at 135° , $\overrightarrow{\mathbf{C}} = 10 m/s$ at 330°
 $\overrightarrow{\mathbf{D}} = 10 m/s$ at -30° , $\overrightarrow{\mathbf{E}} = 10 m/s$ at 200°

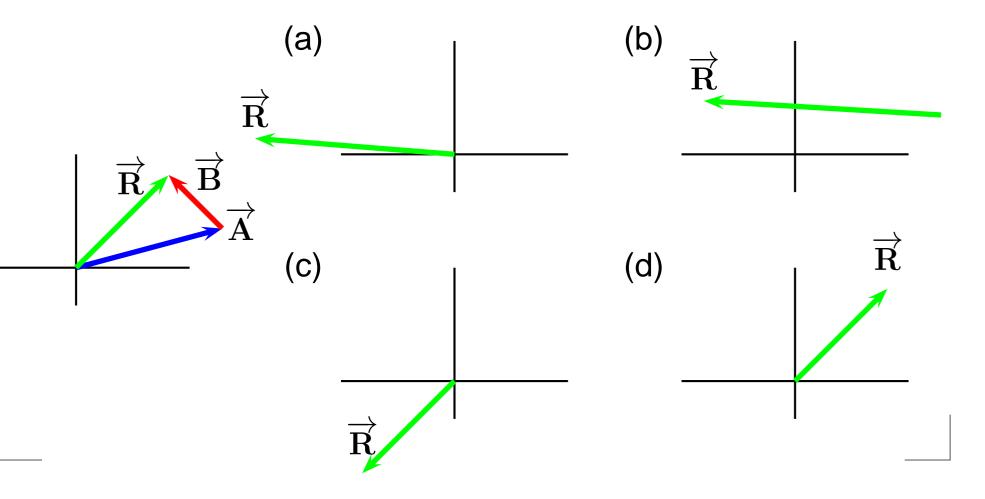
Review Example I

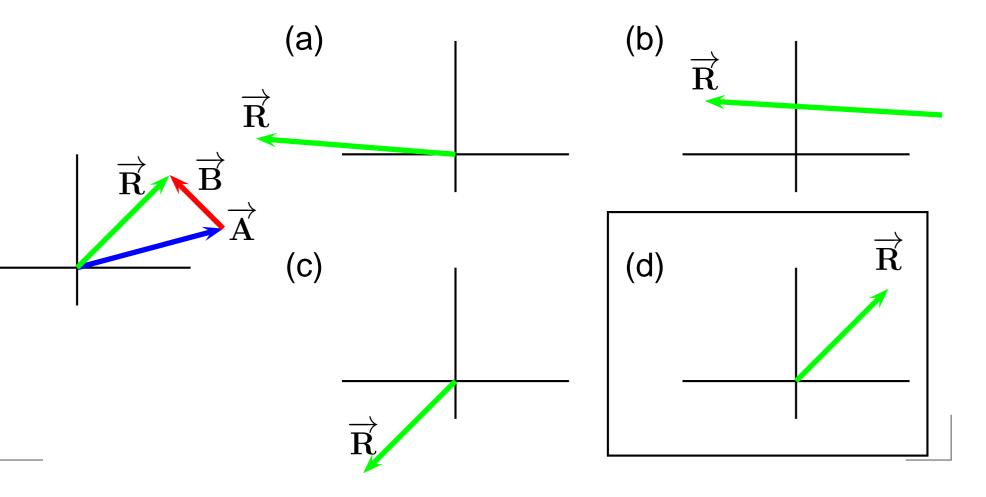
Example: Sketch the following vectors. Start all vectors at the origin. Also, assume all direction are given by the "standard" angle - from the +x-axis.

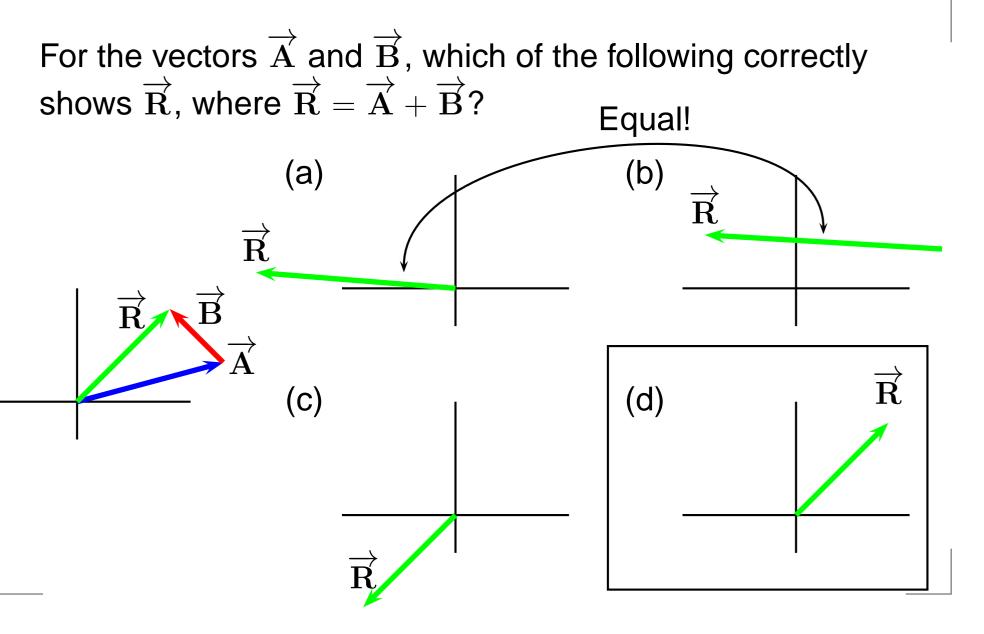




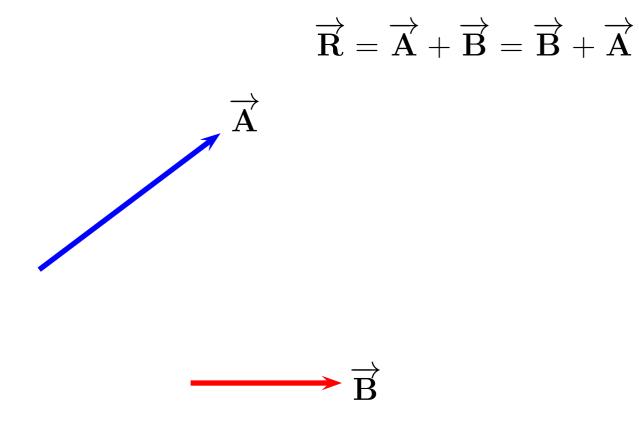




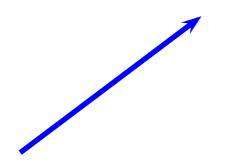




$$\overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$$



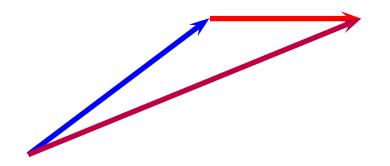
$$\overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$$



First do $\overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}}$.

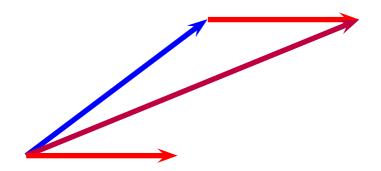
$$\overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$$

$$\overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$$



First do $\overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}}$.

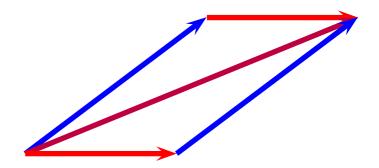
$$\overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$$



Now do $\overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$.

You can add vectors in either order and the answer is the same!

$$\overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$$



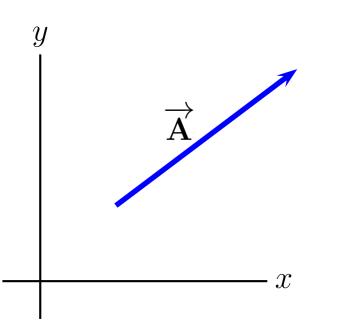
Now do $\overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$.

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

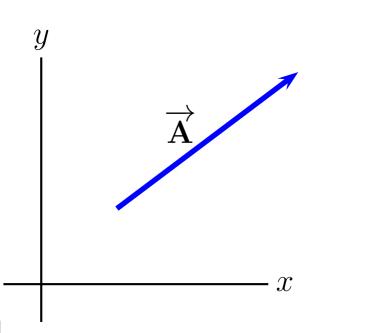
From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.



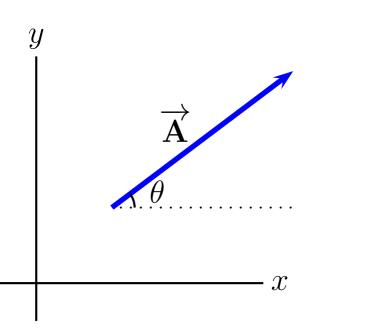
From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.



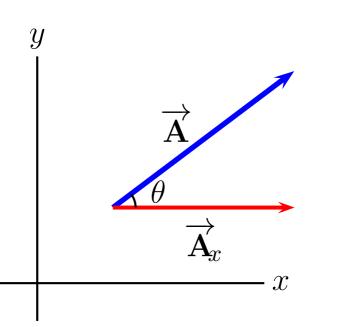
From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.



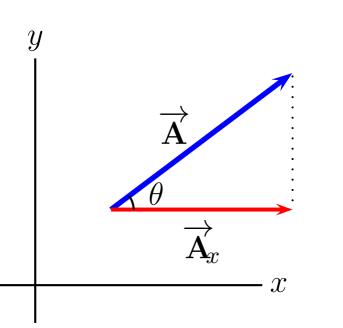
From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.



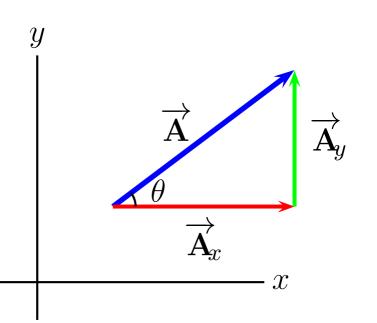
From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.



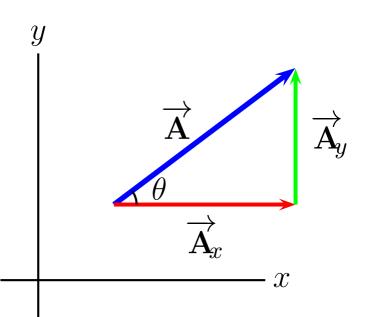
From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

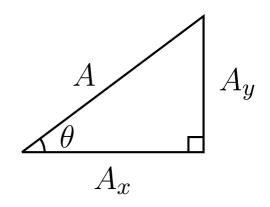


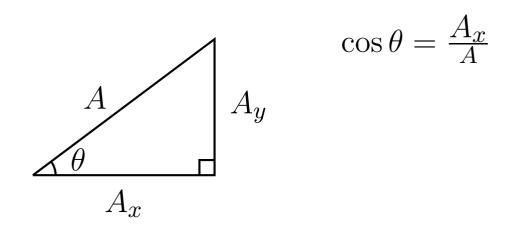
From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).

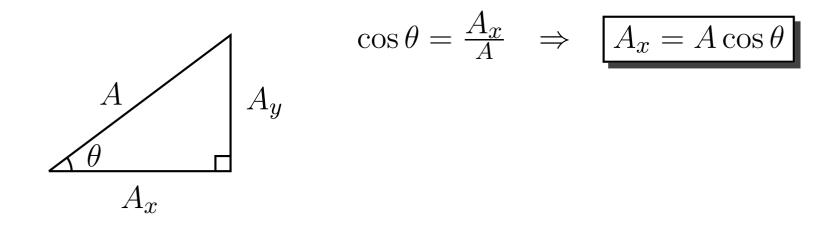
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

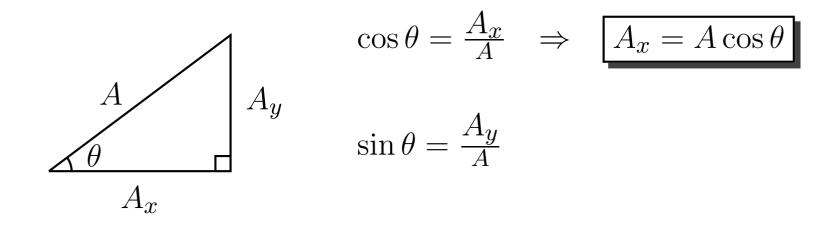


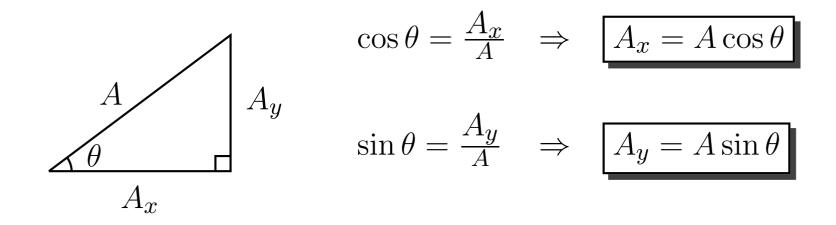
 $\overrightarrow{\mathbf{A}}_{x}, \overrightarrow{\mathbf{A}}_{y}$ are the vector components. $\overrightarrow{\mathbf{A}}_{x} + \overrightarrow{\mathbf{A}}_{y} = \overrightarrow{\mathbf{A}}$ A_{x}, A_{y} and their signs are the scalar components





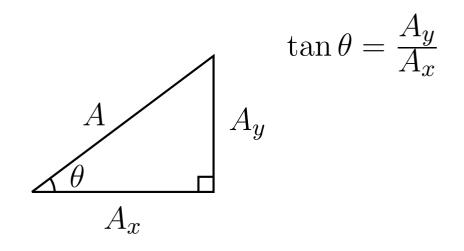




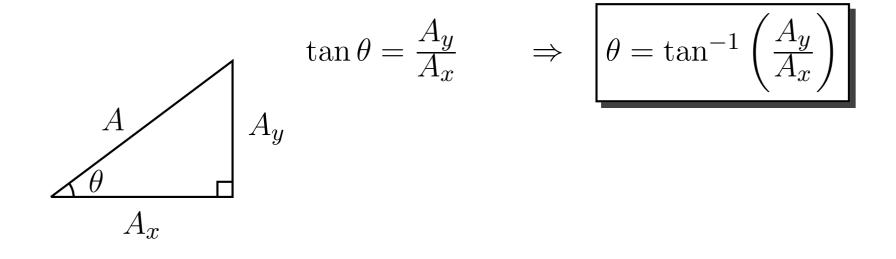


To find the magnitude and the angle *from* the components:

To find the magnitude and the angle *from* the components:

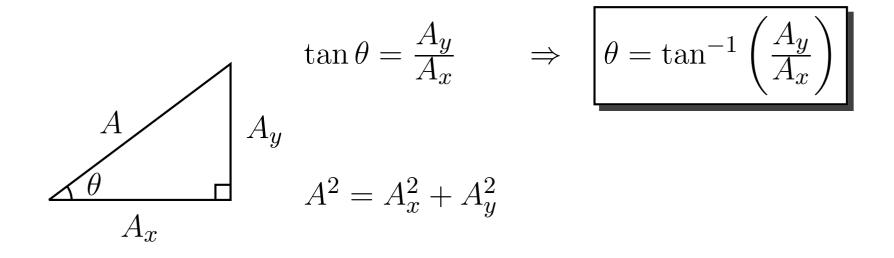


To find the magnitude and the angle *from* the components:



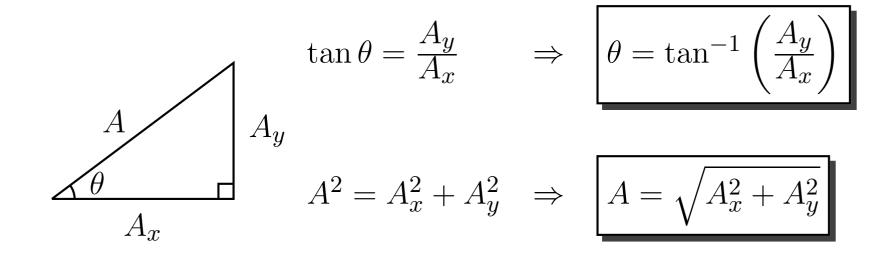
Scalar Components II

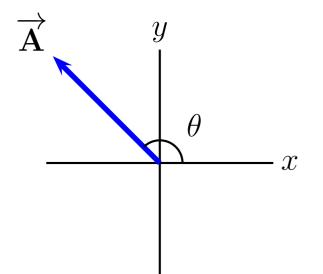
To find the magnitude and the angle *from* the components:

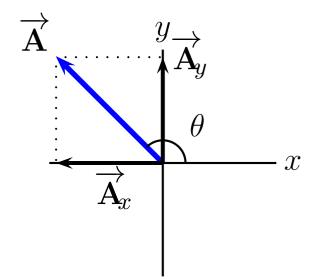


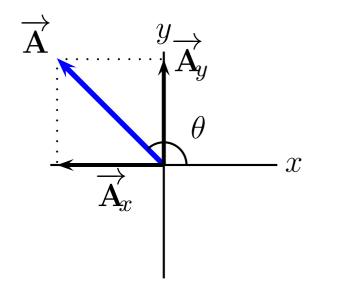
Scalar Components II

To find the magnitude and the angle *from* the components:

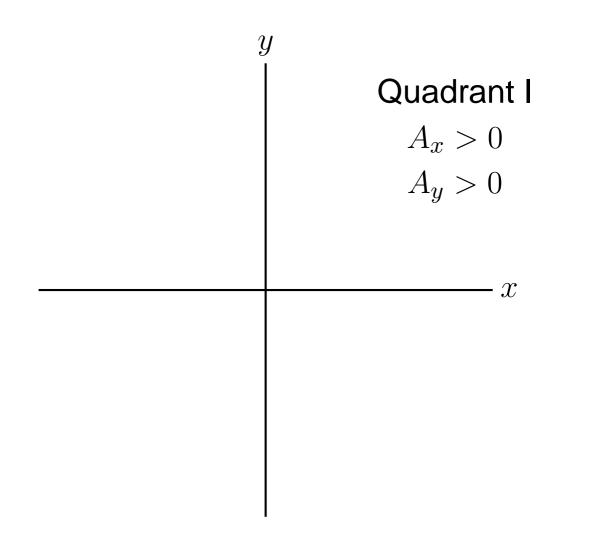


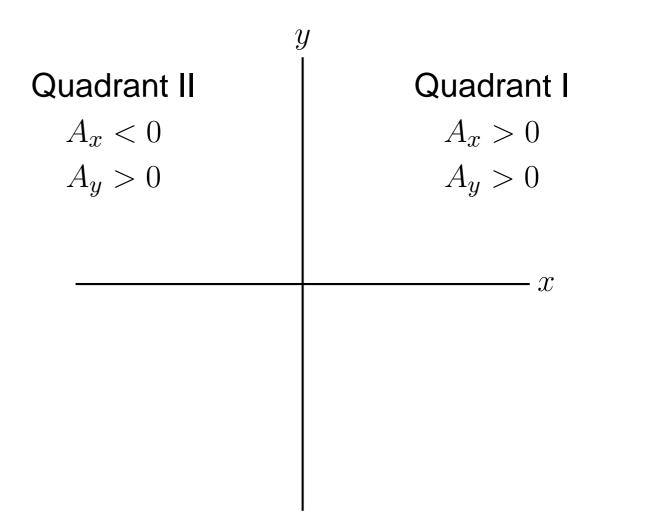


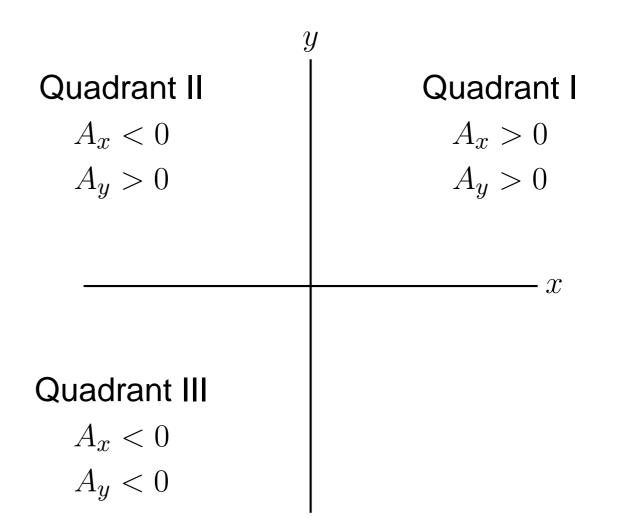


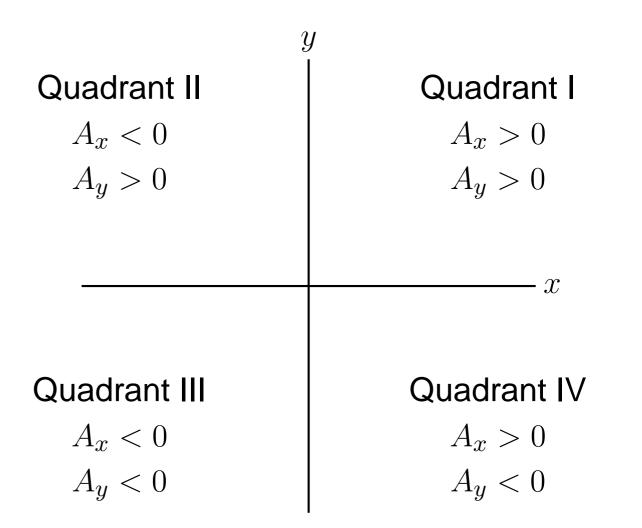


 $A_x < 0$ $A_y > 0$









What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13°

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13°
(b) 126.87°

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13°
(b) 126.87°
(c) 233.13°

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13°
(b) 126.87°
(c) 233.13°
(d) 306.87°

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13°
(b) 126.87°
(c) 233.13°
(d) 306.87°

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13°
(b) 126.87°
(c) 233.13°
(d) 306.87°

 $\overrightarrow{\mathbf{v}_{x}}$

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13° (b) 126.87° (c) 233.13° (d) 306.87°

What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13° (b) 126.87° (c) 233.13° (d) 306.87° $\overrightarrow{v_y}$

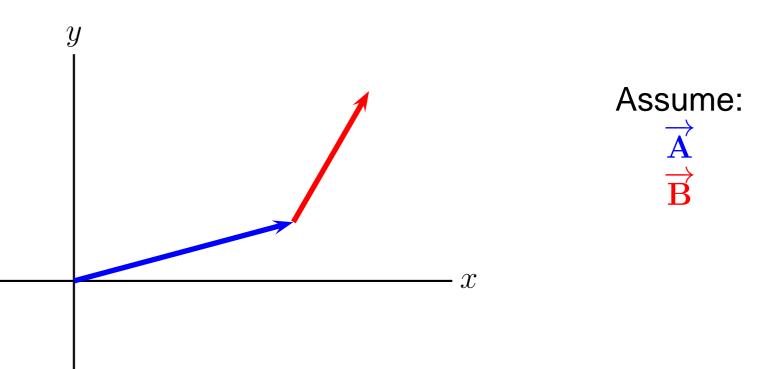
What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

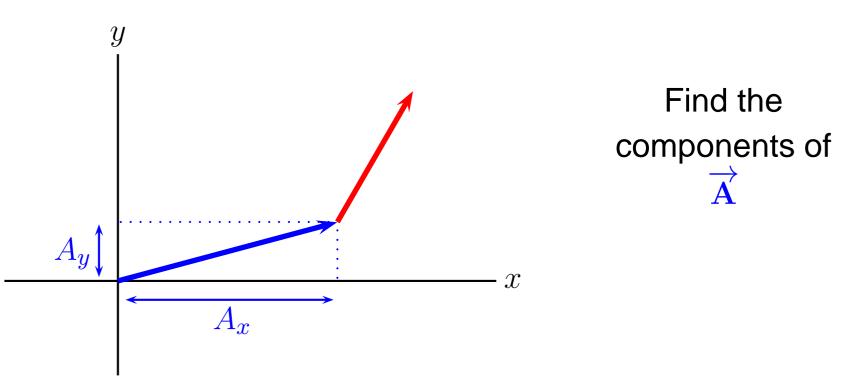
(a) 53.13° (b) 126.87° (c) 233.13° (d) 306.87° \overrightarrow{v}

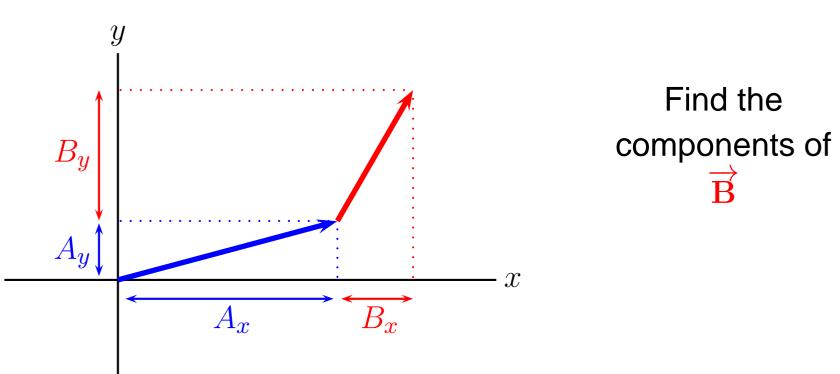
 $\overrightarrow{\mathbf{v}}_y$

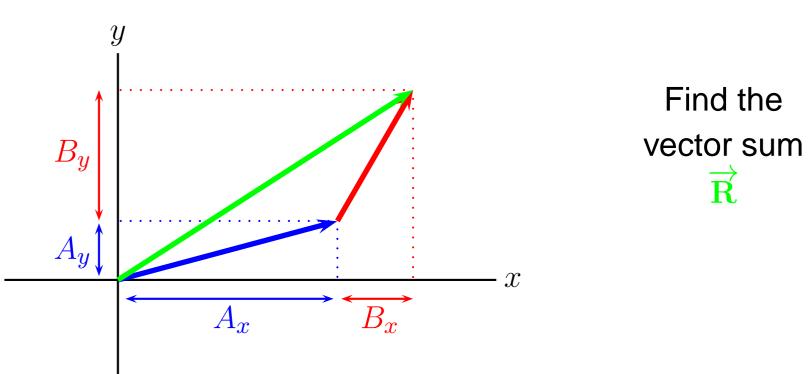
What is the standard-angle direction for the velocity vector with components $v_x = -3 m/s$, $v_y = -4 m/s$? HINT: $\tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}$.

(a) 53.13° (b) 126.87° **(c)** 233.13° (d) 306.87° $\overrightarrow{\mathbf{v}}_x$ $\overrightarrow{\mathbf{v}}_y$

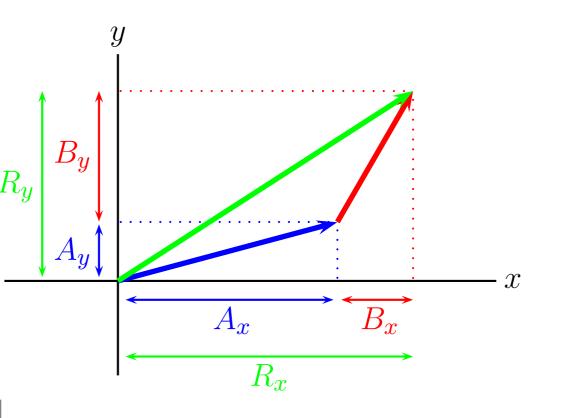








While we **cannot** add the magnitudes of vectors. We can add the components.



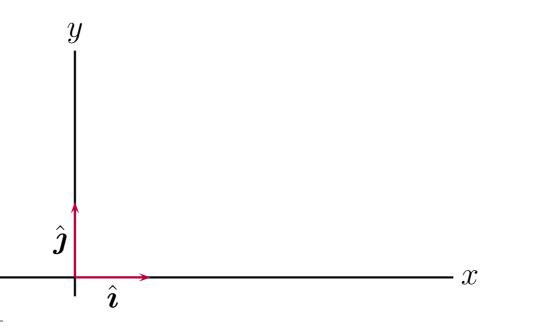
The components of $\overrightarrow{\mathbf{R}}$: $R_x = A_x + B_x$ $R_y = A_y + B_y$

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.

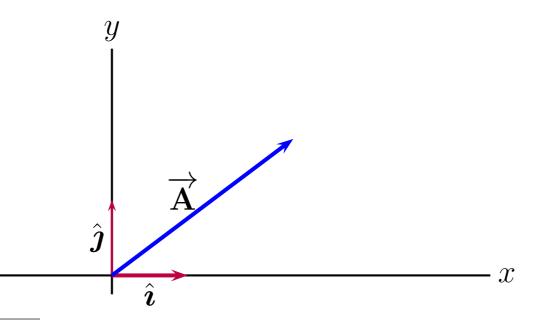
Each unit vector has magnitude 1 and points along each axis. We use the symbols \hat{i} , \hat{j} , and \hat{k} for the unit vectors along the x, y, and z axes.

y ______*x*

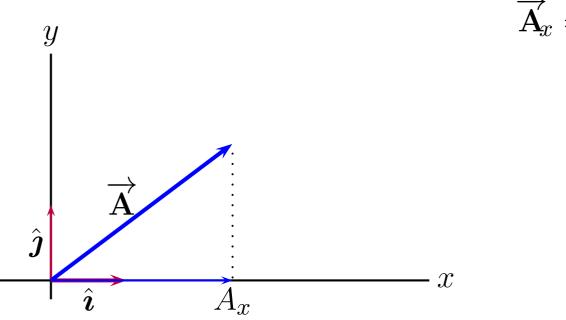
A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.



A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.

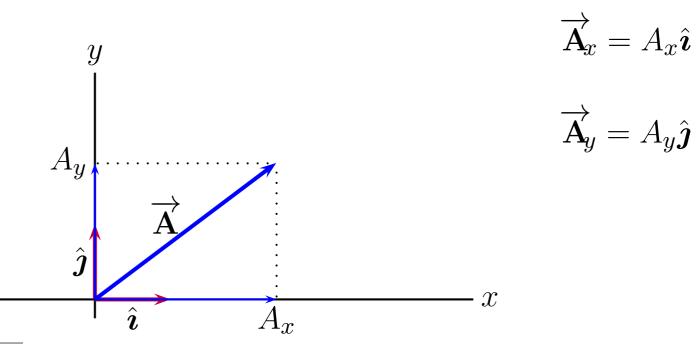


A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.



$$=A_x\hat{\imath}$$

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.



A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.

