February 1, Week 3

Today: Chapter 1, Vectors
Homework Assignment \#3 due February 6
Mastering Physics: 3 Mastering Physics problems, 2.77, 2.85, 2.93.
Written Problem: 2.88.

Exam \#1 Friday, February 10.
Practice Exam available on website.

Review

Vector $-\overrightarrow{\mathbf{A}}$, Any physical quantity which has a magnitude and direction associated with it.

Review

Vector $-\overrightarrow{\mathbf{A}}$, Any physical quantity which has a magnitude and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.

Review

Vector $-\overrightarrow{\mathbf{A}}$, Any physical quantity which has a magnitude
and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.

Example:

$$
\overrightarrow{\mathbf{v}}=5 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ}
$$

Review

Vector $-\overrightarrow{\mathbf{A}}$, Any physical quantity which has a magnitude and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.

Example:

Review Example I

Example: Sketch the following vectors. Start all vectors at the origin. Also, assume all direction are given by the "standard" angle - from the $+x$-axis.

$$
\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ}, \overrightarrow{\mathbf{B}}=7.5 \mathrm{~m} / \mathrm{s} \text { at } 135^{\circ}, \overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s} \text { at } 330^{\circ}
$$

$$
\overrightarrow{\mathbf{D}}=10 \mathrm{~m} / \mathrm{s} \text { at }-30^{\circ}, \overrightarrow{\mathbf{E}}=10 \mathrm{~m} / \mathrm{s} \text { at } 200^{\circ}
$$

Review Example I

Example: Sketch the following vectors. Start all vectors at the origin. Also, assume all direction are given by the "standard" angle - from the $+x$-axis.

$$
\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ}, \overrightarrow{\mathbf{B}}=7.5 \mathrm{~m} / \mathrm{s} \text { at } 135^{\circ}, \overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s} \text { at } 330^{\circ}
$$

$$
\overrightarrow{\mathbf{D}}=10 \mathrm{~m} / \mathrm{s} \text { at }-30^{\circ}, \overrightarrow{\mathbf{E}}=10 \mathrm{~m} / \mathrm{s} \text { at } 200^{\circ}
$$

\vec{C}, \vec{D} have
same magnitude and direction
$\Rightarrow \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{D}}$
but $\overrightarrow{\mathrm{D}} \neq \overrightarrow{\mathbf{E}}$
while $D=E$

Vector Addition Review

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

(b)

(c)

(d)

Vector Addition Review

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows \vec{R}, where $\vec{R}=\vec{A}+\vec{B}$?

Vector Addition Review

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows \vec{R}, where $\vec{R}=\vec{A}+\vec{B}$?
(a)
\vec{R}
(c)

(b)

(d)

Vector Addition Review

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows \vec{R}, where $\vec{R}=\vec{A}+\vec{B}$?
(a)

(c)

(b)

Vector Addition Review

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Equal!

(b)

Vector Addition is commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

Vector Addition is commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

Vector Addition is commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$.

Vector Addition is commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$.

Vector Addition is commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$.

Vector Addition is commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

Now do $\overrightarrow{\mathrm{B}}+\overrightarrow{\mathbf{A}}$.

Vector Addition is commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

Now do $\vec{B}+\overrightarrow{\mathbf{A}}$.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the
components are
the horizontal
and vertical
lengths from
tip to tail.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the
components are
the horizontal
and vertical
lengths from
tip to tail.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the
components are
the horizontal
and vertical
lengths from
tip to tail.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the
components are
the horizontal
and vertical
lengths from
tip to tail.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the
components are
the horizontal
and vertical
lengths from
tip to tail.

Components

From now on, we'll use the familiar Cartesian co-ordinate system, (x, y).
The components of a vector are the "pieces" of the vector parallel to the x and y axes.

$\overrightarrow{\mathbf{A}}_{x}, \overrightarrow{\mathbf{A}}_{y}$ are the
vector components.
$\overrightarrow{\mathbf{A}}_{x}+\overrightarrow{\mathbf{A}}_{y}=\overrightarrow{\mathbf{A}}$
A_{x}, A_{y} and their signs
are the scalar components

Scalar Components

The scalar components are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Scalar Components

The scalar components are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Scalar Components

The scalar components are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Scalar Components

The scalar components are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Scalar Components

The scalar components are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Scalar Components

The scalar components are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Quadrants

The different quadrants cause the sign of the components to change.

Quadrants

The different quadrants cause the sign of the components to change.

Quadrants

The different quadrants cause the sign of the components to change.

Quadrants

The different quadrants cause the sign of the components to change.

Quadrants II

Quadrants II

Quadrants II

Quadrants II

Quadrantil

Quadrant II

$$
\begin{aligned}
& A_{x}<0 \\
& A_{y}>0
\end{aligned}
$$

Quadrant I

$$
\begin{aligned}
& A_{x}>0 \\
& A_{y}>0
\end{aligned}
$$

Quadrant III

$$
\begin{aligned}
& A_{x}<0 \\
& A_{y}<0
\end{aligned}
$$

Quadrant IV

$$
\begin{aligned}
& A_{x}>0 \\
& A_{y}<0
\end{aligned}
$$

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°
(c) 233.13°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°
(c) 233.13°
(d) 306.87°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°

(c) 233.13°
(d) 306.87°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°

(c) 233.13°
(d) 306.87°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°

(c) 233.13°
(d) 306.87°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°

(c) 233.13°
(d) 306.87°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 \mathrm{~m} / \mathrm{s}, v_{y}=-4 \mathrm{~m} / \mathrm{s}$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°

(c) 233.13°
(d) 306.87°

Clicker Quiz

What is the standard-angle direction for the velocity vector with components $v_{x}=-3 m / s, v_{y}=-4 m / s$? HINT:
$\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$.
(a) 53.13°
(b) 126.87°

> | (c) 233.13° |
| :--- |
| (d) 306.87° |

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Find the components of \vec{A}

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Find the components of \vec{B}

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Find the
vector sum
\vec{R}

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

The components of $\overrightarrow{\mathrm{R}}$:

$$
R_{x}=A_{x}+B_{x}
$$

$$
R_{y}=A_{y}+B_{y}
$$

Unit Vectors

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.
Each unit vector has magnitude 1 and points along each axis. We use the symbols $\hat{\imath}, \hat{\jmath}$, and $\hat{\mathrm{k}}$ for the unit vectors along the x, y, and z axes.

Unit Vectors

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.
Each unit vector has magnitude 1 and points along each axis. We use the symbols $\hat{\imath}, \hat{\jmath}$, and $\hat{\mathrm{k}}$ for the unit vectors along the x, y, and z axes.

Unit Vectors

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.
Each unit vector has magnitude 1 and points along each axis. We use the symbols $\hat{\imath}, \hat{\jmath}$, and $\hat{\mathrm{k}}$ for the unit vectors along the x, y, and z axes.

Unit Vectors

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.
Each unit vector has magnitude 1 and points along each axis. We use the symbols $\hat{\imath}, \hat{\jmath}$, and $\hat{\mathrm{k}}$ for the unit vectors along the x, y, and z axes.

$$
\overrightarrow{\mathbf{A}}_{x}=A_{x} \hat{\imath}
$$

Unit Vectors

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.
Each unit vector has magnitude 1 and points along each axis. We use the symbols $\hat{\imath}, \hat{\jmath}$, and $\hat{\mathrm{k}}$ for the unit vectors along the x, y, and z axes.

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}_{x}=A_{x} \hat{\boldsymbol{\imath}} \\
& \overrightarrow{\mathbf{A}}_{y}=A_{y} \hat{\boldsymbol{\jmath}}
\end{aligned}
$$

Unit Vectors

A compact and efficient way of expressing a vector in terms of its components is to use unit vectors.
Each unit vector has magnitude 1 and points along each axis. We use the symbols $\hat{\imath}, \hat{\jmath}$, and $\hat{\mathrm{k}}$ for the unit vectors along the x, y, and z axes.

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}_{x}=A_{x} \hat{\imath} \\
& \overrightarrow{\mathbf{A}}_{y}=A_{y} \hat{\jmath} \\
& \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{A}}_{x}+\overrightarrow{\mathbf{A}}_{y} \\
& \Rightarrow \overrightarrow{\mathbf{A}}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}
\end{aligned}
$$

