Students

The following students did not have their clicker response recorded (or answered on a piece of paper).

Aguilera, Joshua	Becenti, Adam	Candelaria, Steven
Cordova, Trey	Economides, Megan	Elias, David
Fournier, Matthew	Gagon, Nicole	Gillen, Cameron
Gordon, Ashley	Hacker, Jessica	Keller, Calvin
Kimball, Elizabeth	Lambert, James	Lee, Nayah
Mitchell, Anne	Olona, Gerome	Ontiveros, Francisco
Silva, Danielle	Silva, Jacob	Smith, Montana
Thompson, Lindsay	Wichman, Stuart	Wiklund, Joseph
Yegerlehner, Erika		
Silva, Danielle Thompson, Lindsay Yegerlehner, Erika	Silva, Jacob Wichman, Stuart	Smith, Montana Wiklund, Joseph

Nathan Thomas, please come see me.

January 27, Week 2

Today: Chapter 2, Constant Acceleration

Homework Assignment #2 due January 30 Mastering Physics: 1.6, 2.4, 2.59, and 3 special Mastering Physics problems. Written Problem: 2.75.

Homework Assignment #3 due February 6 Mastering Physics: 3 Mastering Physics problems, 2.77, 2.85, 2.93. Written Problem: 2.88.

Please see website for your homework box number.

Acceleration, *a* - rate at which *velocity* changes.

Acceleration, *a* - rate at which *velocity* changes.

$$a_{av} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1} \quad \text{unit: } m/s^2$$

Acceleration, *a* - rate at which *velocity* changes.

$$a_{av} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1} \quad \text{unit: } m/s^2$$

Accelerating vs. Decelerating:

Acceleration, *a* - rate at which *velocity* changes.

$$a_{av} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1} \quad \text{unit: } m/s^2$$

Accelerating vs. Decelerating:

When a and v have the same sign, speed increases. When a and v have the opposite sign, speed decreases.

Constant Acceleration

When the acceleration is unchanging with time:

$$v = v_o + at$$

Constant Acceleration

When the acceleration is unchanging with time:

$$v = v_o + at$$

$$v = \frac{dx}{dt}$$

$$v = \frac{dx}{dt} \Rightarrow dx = v \, dt$$

$$v = \frac{dx}{dt} \Rightarrow dx = v \, dt = (v_o + at) \, dt$$

$$v = \frac{dx}{dt} \Rightarrow dx = v \, dt = (v_o + at) \, dt$$

$$\Rightarrow \int_{x_o}^x dx = \int_o^t \left(v_o + at \right) dt$$

$$v = \frac{dx}{dt} \Rightarrow dx = v \, dt = (v_o + at) \, dt$$

$$\Rightarrow \int_{x_o}^x dx = \int_o^t \left(v_o + at \right) dt \Rightarrow x - x_o = v_o t + \frac{1}{2}at^2$$

$$v = \frac{dx}{dt} \Rightarrow dx = v \, dt = (v_o + at) \, dt$$

$$\Rightarrow \int_{x_o}^x dx = \int_o^t \left(v_o + at \right) dt \Rightarrow x - x_o = v_o t + \frac{1}{2}at^2$$

$$\Rightarrow \boxed{x = x_o + v_o t + \frac{1}{2}at^2}$$

The Position Graph

Since velocity is changing, the distance traveled each second is also changing \Rightarrow not a straight line for position versus time.

The Position Graph

Since velocity is changing, the distance traveled each second is also changing \Rightarrow not a straight line for position versus time.

The Position Graph

Since velocity is changing, the distance traveled each second is also changing \Rightarrow not a straight line for position versus time.

Two Other Equations

From algebraic manipulations, two other equations can be derived.

Two Other Equations

From algebraic manipulations, two other equations can be derived.

$$v^2 = v_o^2 + 2a \left(x - x_o \right)$$

Two Other Equations

From algebraic manipulations, two other equations can be derived.

$$v^2 = v_o^2 + 2a \left(x - x_o \right)$$

$$x - x_o = \frac{1}{2} \left(v_o + v \right) t$$

Example I

Example: A car is traveling on a straight road with a speed of 30 m/s when the driver hits the brakes causing a constant deceleration of $5 m/s^2$. How far does the car go while stopping?

Example II

Example: A ball is thrown upwards with a velocity of 10 m/s. If we can ignore air resistance, what is its velocity after 1.5 s?

Example II

Example: A ball is thrown upwards with a velocity of 10 m/s. If we can ignore air resistance, what is its velocity after 1.5 s?

If the Ball is thrown from a height of 1.5 m, what is its maximum height above the ground?

Example II

Example: A ball is thrown upwards with a velocity of 10 m/s. If we can ignore air resistance, what is its velocity after 1.5 s?

If the Ball is thrown from a height of 1.5 m, what is its maximum height above the ground?

I encourage you to show:

- The ball spends an equal amount of time going up as coming back down.
- The ball returns to x = 1.5 m with the same speed it started with.