Students

The following students did not have their clicker response recorded (or answered on a piece of paper).

Aguilera, Joshua	Baty, Nicole	Becenti, Adam
Burlbaw, Steven	Candelaria, Steven	Cordova, Trey
Eaton, Brian	Economides, Megan	Elias, David
Espinosa, Jordan	Espinoza, Tatiana	Gagon, Nicole
Gillen, Cameron	Gonzalez, Raymond	Hacker, Jessica
Keller, Calvin	Kimball, Elizabeth	Lambert, James
Lee, Nayah	Martinez, Brian	McCutcheon, Whitney
Medina, Felipe	Mitchell, Anne	Olona, Gerome
Ontiveros, Francisco	Seibert, Amy	Silva, Jacob
Smith, Montana	Snelling, Sam	Soto, Armando

Students Continued

Stefani, Michael	Toquinto, Hilda	Vottero, Louis
Wisler, Tracy	Yegerlehner, Erika	

There were 5 clickers which were recorded but not registered.

Nathan Thomas, please come see me.

January 25, Week 2

Today: Chapter 2, Acceleration
Homework Assignment \#2 due January 30
Mastering Physics: 1.6, 2.4, 2.59, and 3 special Mastering Physics problems.
Written Problem: 2.75.
Information about student boxes available on Friday.

Review

How fast = Average speed

$$
s p_{a v}=\frac{\text { distance }}{\text { elapsedtime }}=\frac{d}{\Delta t}, \quad \Delta t=t_{2}-t_{1}
$$

Review

How fast = Average speed

$$
s p_{a v}=\frac{\text { distance }}{\text { elapsed time }}=\frac{d}{\Delta t}, \quad \Delta t=t_{2}-t_{1}
$$

Average Velocity:

$$
v_{a v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \quad \text { unit: } m / s
$$

Review II

Instantaneous velocity, v :

Review II

Instantaneous velocity, v :

Review II

Instantaneous velocity, v :

Velocity is the time derivative of position, i. e. , the slope of the position versus time graph.

Acceleration

- Acceleration, a - rate at which velocity changes.

Acceleration

- Acceleration, a - rate at which velocity changes.

$$
a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

Acceleration

- Acceleration, a - rate at which velocity changes.

$$
a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

- Unit: $\frac{m / s}{s}=\frac{m}{s} \times \frac{1}{s}=m / s^{2}$

Acceleration

- Acceleration, a - rate at which velocity changes.
-

$$
a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

- Unit: $\frac{m / s}{s}=\frac{m}{s} \times \frac{1}{s}=m / s^{2}$
- Example: A rabbit accelerates from rest to $2.2 \mathrm{~m} / \mathrm{s}$ in 0.5 s . A turtle accelerates from rest to $2.2 \mathrm{~m} / \mathrm{s}$ in 1 min . Find average acceleration of both.

Acceleration II

As with velocity, instantaneous acceleration, a, is a time derivative, i. e. , the slope of the velocity versus time graph.

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}
$$

Acceleration III

Example: The graph below shows the rabbit's velocity versus time graph for part of the race. Find the acceleration values.

Acceleration versus Deceleration

- The sign of acceleration is more complicated than position's or velocity's

You cannot say that $a>0$ means speeding up and $a<0$ means slowing down.

Acceleration versus Deceleration

- The sign of acceleration is more complicated than position's or velocity's

You cannot say that $a>0$ means speeding up and $a<0$ means slowing down.

- Example: A rabbit going $0.7 \mathrm{~m} / \mathrm{s}$ to the left increases his velocity to $2.2 \mathrm{~m} / \mathrm{s}$ to the left. What is the rabbit's acceleration if this change takes $0.75 s$?

Acceleration versus Deceleration

- The sign of acceleration is more complicated than position's or velocity's

You cannot say that $a>0$ means speeding up and $a<0$ means slowing down.

- Example: A rabbit going $0.7 \mathrm{~m} / \mathrm{s}$ to the left increases his velocity to $2.2 \mathrm{~m} / \mathrm{s}$ to the left. What is the rabbit's acceleration if this change takes $0.75 s$?
- When a and v have the same sign, speed increases.

Acceleration versus Deceleration

- The sign of acceleration is more complicated than position's or velocity's

You cannot say that $a>0$ means speeding up and $a<0$ means slowing down.

- Example: A rabbit going $0.7 \mathrm{~m} / \mathrm{s}$ to the left increases his velocity to $2.2 \mathrm{~m} / \mathrm{s}$ to the left. What is the rabbit's acceleration if this change takes $0.75 s$?
- When a and v have the same sign, speed increases.
- When a and v have the opposite sign, speed decreases.

Clicker Quiz

A rabbit, located 3 m to the left of the origin, is going $2.4 \mathrm{~m} / \mathrm{s}$ to the left with an increasing speed. Which of the following choices is a correct labeling for the rabbit's kinematics quantities?

Clicker Quiz

A rabbit, located 3 m to the left of the origin, is going $2.4 \mathrm{~m} / \mathrm{s}$ to the left with an increasing speed. Which of the following choices is a correct labeling for the rabbit's kinematics quantities?
(a) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a<0$

Clicker Quiz

A rabbit, located 3 m to the left of the origin, is going $2.4 \mathrm{~m} / \mathrm{s}$ to the left with an increasing speed. Which of the following choices is a correct labeling for the rabbit's kinematics quantities?
(a) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a<0$
(b) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a>0$

Clicker Quiz

A rabbit, located 3 m to the left of the origin, is going $2.4 \mathrm{~m} / \mathrm{s}$ to the left with an increasing speed. Which of the following choices is a correct labeling for the rabbit's kinematics quantities?
(a) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a<0$
(b) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a>0$
(c) $\quad x=-3 m, \quad v=2.4 m / s, \quad a<0$

Clicker Quiz

A rabbit, located $3 m$ to the left of the origin, is going $2.4 \mathrm{~m} / \mathrm{s}$ to the left with an increasing speed. Which of the following choices is a correct labeling for the rabbit's kinematics quantities?
(a) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a<0$
(b) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a>0$
(c) $\quad x=-3 m, \quad v=2.4 m / s, \quad a<0$
(d) $\quad x=-3 m, \quad v=2.4 m / s, \quad a>0$

Clicker Quiz

A rabbit, located 3 m to the left of the origin, is going $2.4 \mathrm{~m} / \mathrm{s}$ to the left with an increasing speed. Which of the following choices is a correct labeling for the rabbit's kinematics quantities?
(a) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a<0$
(b) $\quad x=-3 m, \quad v=-2.4 m / s, \quad a>0$
(c) $\quad x=-3 m, \quad v=2.4 m / s, \quad a<0$
(d) $\quad x=-3 m, \quad v=2.4 m / s, \quad a>0$

Constant Acceleration

An easily solved kinematics problem has the acceleration unchanging with time.

Constant Acceleration

An easily solved kinematics problem has the acceleration unchanging with time.

Objects in free fall near the surface of the earth have a constant acceleration of $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Constant Acceleration

An easily solved kinematics problem has the acceleration unchanging with time.

Objects in free fall near the surface of the earth have a constant acceleration of $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

In the absence of air resistance.

Equations of Motion

To find the equations of motion $(x(t), v(t))$, we solve differential equations.

Equations of Motion

To find the equations of motion $(x(t), v(t))$, we solve differential equations.

$$
a=\frac{d v}{d t}
$$

Equations of Motion

To find the equations of motion $(x(t), v(t))$, we solve differential equations.

$$
a=\frac{d v}{d t} \Rightarrow d v=a d t
$$

Equations of Motion

To find the equations of motion $(x(t), v(t))$, we solve differential equations.

$$
a=\frac{d v}{d t} \Rightarrow d v=a d t \Rightarrow \int d v=\int a d t=a \int d t
$$

Equations of Motion

To find the equations of motion $(x(t), v(t))$, we solve differential equations.

$$
a=\frac{d v}{d t} \Rightarrow d v=a d t \Rightarrow \int d v=\int a d t=a \int d t
$$

There is never a indefinite integral in physics. Variables always change from their initial to final values.

It is customary to change our notation slightly here. From now on, initial time is assumed to be zero. Initial values are given a zero subscript - v_{o}, x_{o}.

The Velocity Equation

$$
\int_{v_{o}}^{v} d v=a \int_{o}^{t} d t
$$

The Velocity Equation

$$
\int_{v_{o}}^{v} d v=a \int_{o}^{t} d t \Rightarrow v-v_{o}=a t
$$

The Velocity Equation

$$
\int_{v_{o}}^{v} d v=a \int_{o}^{t} d t \Rightarrow v-v_{o}=a t \Rightarrow v=v_{o}+a t
$$

The Velocity Equation

$$
\int_{v_{o}}^{v} d v=a \int_{o}^{t} d t \Rightarrow v-v_{o}=a t \Rightarrow v=v_{o}+a t
$$

