January 20, Week 1

Today: Chapter 1, Introduction to S.I. Units and Kinematics
Homework Assignment \#1: 4 Introductory Mastering Physics Problems due January 23, 11:59PM.

Homework Assignment \#2 due January 30
Mastering Physics: 1.6, 2.4, 2.59, and 3 special Mastering Physics problems.
Written Problem: 2.75.

Syllabus Addendum: Exam 1 will be on February 10. Exam 2 will be on February 24. Corrected syllabi can be downloaded on the class webpage.

Announcement

THE OFFICE OF ACCESSIBILITY RESOURCE CENTER IS LOOKING FOR A STUDENT IN THIS CLASS TO VOLUNTEER TO PROVIDE NOTES FOR THIS CLASS. THE STUDENT WILL BE PAID A STIPEND FOR THE SEMESTER. INTERESTED STUDENT SHOULD COME BY OUR OFFICE AT 2021 MESA VISTA HALL TO COMPLETE THE REQUIRED HIRING PAPERWORK.
 Daniel Weems, Note-taking Coordinator

Accessibility Resource Center office 505.277.3506 fax 505.277.3750 http://arc.unm.edu

What is Physics?

- Science is asking questions about "Nature".

What is Physics?

- Science is asking questions about "Nature".
- Physics asks the question "Why?".

What is Physics?

- Science is asking questions about "Nature".
- Physics asks the question "Why?".
- Physics is the fundamental science. All other sciences are built on it.

The Scientific Method

To answer the questions "Why" and all other scientific questions, we use the scientific method. (Developed by Galileo Galilei and Francis Bacon in the 1500's.) It consists of a series of steps.

The Scientific Method

To answer the questions "Why" and all other scientific questions, we use the scientific method. (Developed by Galileo Galilei and Francis Bacon in the 1500's.) It consists of a series of steps.

- Look for the simplest underlying law of nature that can answer your question.

The Scientific Method

To answer the questions "Why" and all other scientific questions, we use the scientific method. (Developed by Galileo Galilei and Francis Bacon in the 1500's.) It consists of a series of steps.

- Look for the simplest underlying law of nature that can answer your question.
- Model the law using mathematics.

The Scientific Method

To answer the questions "Why" and all other scientific questions, we use the scientific method. (Developed by Galileo Galilei and Francis Bacon in the 1500's.) It consists of a series of steps.

- Look for the simplest underlying law of nature that can answer your question.
- Model the law using mathematics.
- Make predictions from the mathematics.

The Scientific Method

To answer the questions "Why" and all other scientific questions, we use the scientific method. (Developed by Galileo Galilei and Francis Bacon in the 1500's.) It consists of a series of steps.

- Look for the simplest underlying law of nature that can answer your question.
- Model the law using mathematics.
- Make predictions from the mathematics.
- Test these predictions experimentally.

The Scientific Method

To answer the questions "Why" and all other scientific questions, we use the scientific method. (Developed by Galileo Galilei and Francis Bacon in the 1500's.) It consists of a series of steps.

- Look for the simplest underlying law of nature that can answer your question.
- Model the law using mathematics.
- Make predictions from the mathematics.
- Test these predictions experimentally.
- If experiment and prediction do not agree, start over.

The Scientific Method

To answer the questions "Why" and all other scientific questions, we use the scientific method. (Developed by Galileo Galilei and Francis Bacon in the 1500's.) It consists of a series of steps.

- Look for the simplest underlying law of nature that can answer your question.
- Model the law using mathematics.
- Make predictions from the mathematics.
- Test these predictions experimentally.
- If experiment and prediction do not agree, start over.
- If experiment and prediction do agree, repeat and build consensus.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S. I.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S. I.
- Unit of length

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S. I.
- Unit of length $=$ meter (m)

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S. I.
- Unit of length $=$ meter (m)
- Unit of mass

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S. I.
- Unit of length = meter (m)
- Unit of mass = kilogram (kg)

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S. I.
- Unit of length = meter (m)
- Unit of mass = kilogram (kg)
- Unit of time

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S. I.
- Unit of length = meter (m)
- Unit of mass = kilogram (kg)
- Unit of time $=$ second (s)

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the
U. S. customary.

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the
U. S. customary.

- Unit of length

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the
U. S. customary.

- Unit of length $=$ foot $(f t)$

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the
U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the
U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight $=$ pound $(l b)$

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the
U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight $=$ pound $(l b)$
- Unit of time

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the
U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight = pound (lb)
- Unit of time = second (s)

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- giga $(G)=10^{9}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- giga $(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$ - centi $(c)=0.01=10^{-2}$
- mega $(M)=10^{6}$
- giga $(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- centi $(c)=0.01=10^{-2}$
- mega $(M)=10^{6}$
- mili $(m)=0.001=10^{-3}$
- giga $(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- centi $(c)=0.01=10^{-2}$
- mega $(M)=10^{6}$
- mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$
- giga $(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- centi $(c)=0.01=10^{-2}$
- mega $(M)=10^{6}$
- giga $(G)=10^{9}$
- tera $(T)=10^{12}$
- mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$
- nano $(n)=10^{-9}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- centi $(c)=0.01=10^{-2}$
- mega $(M)=10^{6}$
- giga $(G)=10^{9}$
- tera $(T)=10^{12}$
- mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$
- nano $(n)=10^{-9}$
- pico $(p)=10^{-12}$

Scientific Notation

To express very large of very small numbers, we use scientific notation.

Scientific Notation

To express very large of very small numbers, we use scientific notation.

13500000000000000000000 m

Scientific Notation

To express very large of very small numbers, we use scientific notation.

13500000000000000000000 m Too large to write!

Scientific Notation

To express very large of very small numbers, we use scientific notation.

13500000000000000000000 m Too large to write!

Scientific Notation:
$13500000000000000000000 \mathrm{~m}=1.35 \times 10^{22} \mathrm{~m}$

Scientific Notation

To express very large of very small numbers, we use scientific notation.

13500000000000000000000 m Too large to write!

Scientific Notation:

Engineering Notation

Any size number

Motion

- Mechanics - Study of how and why objects move.

Motion

- Mechanics - Study of how and why objects move.
- Kinematics - Motion without regard to how it is caused.

Motion

- Mechanics - Study of how and why objects move.
- Kinematics - Motion without regard to how it is caused.
- One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.

Motion

- Mechanics - Study of how and why objects move.
- Kinematics - Motion without regard to how it is caused.
- One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.
- To describe motion completely, we need to know

Motion

- Mechanics - Study of how and why objects move.
- Kinematics - Motion without regard to how it is caused.
- One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.
- To describe motion completely, we need to know
- Where the object is located at every time = Position

Motion

- Mechanics - Study of how and why objects move.
- Kinematics - Motion without regard to how it is caused.
- One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.
- To describe motion completely, we need to know
- Where the object is located at every time = Position
- How fast and in what direction the object is going at every time = Velocity

Motion

- Mechanics - Study of how and why objects move.
- Kinematics - Motion without regard to how it is caused.
- One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.
- To describe motion completely, we need to know
- Where the object is located at every time = Position
- How fast and in what direction the object is going at every time = Velocity
- Whether the object is speeding up or slowing down at every time = Acceleration

Position

Position = How far and what direction from an origin.

Position

Position = How far and what direction from an origin.

Position

Position = How far and what direction from an origin.

What we mean is:

The Particle Model

- For now, it suffices to treat moving objects as particles \Rightarrow a single value of position.

The Particle Model

- For now, it suffices to treat moving objects as particles \Rightarrow a single value of position.
- For 1D Motion, direction is indicated by giving positive or negative values for physics quantities. The usual convention is that right = positive and left = negative or up $=$ positive and down = negative .

The Particle Model

- For now, it suffices to treat moving objects as particles \Rightarrow a single value of position.
- For 1D Motion, direction is indicated by giving positive or negative values for physics quantities. The usual convention is that right = positive and left = negative or up = positive and down = negative.
- Example: A bird, flying 6 m above the ground, is watched by a boy on the ground and by a worm which is 50 cm below the ground. Sketch a picture of this situation and find the position of all three.

Displacement

Moving objects change their position, so we introduce displacement.

Displacement

Moving objects change their position, so we introduce displacement.

- Displacement $=$ change in position $=\Delta x($ Delta $x)$

Displacement

Moving objects change their position, so we introduce displacement.

- Displacement $=$ change in position $=\Delta x($ Delta $x)$
- Initial Position $=x_{1}$,

Displacement

Moving objects change their position, so we introduce displacement.

- Displacement $=$ change in position $=\Delta x($ Delta $x)$
- Initial Position $=x_{1}$, Final Position $=x_{2}$

Displacement

Moving objects change their position, so we introduce displacement.

- Displacement $=$ change in position $=\Delta x($ Delta $x)$
- Initial Position $=x_{1}$, Final Position $=x_{2}$

Displacement

Moving objects change their position, so we introduce displacement.

- Displacement $=$ change in position $=\Delta x($ Delta $x)$
- Initial Position $=x_{1}$, Final Position $=x_{2}$

Displacement

Moving objects change their position, so we introduce displacement.

- Displacement $=$ change in position $=\Delta x($ Delta $x)$
- Initial Position $=x_{1}$, Final Position $=x_{2}$

[^0]
Displacement

Moving objects change their position, so we introduce displacement.

- Displacement $=$ change in position $=\Delta x($ Delta $x)$
- Initial Position $=x_{1}$, Final Position $=x_{2}$

- $\Delta x=x_{2}-x_{1}$

Displacement II

Example: The bird, 6 m above the ground, swoops straight down to get the worm which is 50 cm below the ground, what is the bird's displacement?

Displacement II

Example: The bird, 6 m above the ground, swoops straight down to get the worm which is 50 cm below the ground, what is the bird's displacement?

To add or subtract, quantities must have the same unit!

Things to Do:

Register Your I-Clicker! - Quizzes will begin Monday, January 23.

Get your Mastering Physics access code and register. First homework is due Monday, January 23.

[^0]: x_{2}

