# Reading Assignment for October 30 SECtions 7.1 And 7.2 

Please notice that this file is two pages long.

## 7.1 - Describing Circular and Rotational Motion

- To locate an object going around a circle, it is easiest to give the angle $=$ angular position.
- For various reasons, we introduce two more angle units here: radians and revolutions.
- When angle is in radians, arclength $s=r \theta$, which leads to $360^{\circ}=2 \pi \mathrm{rad}$.
- 1 rev $=$ once around a circle, so 1 rev $=360^{\circ}=2 \pi \mathrm{rad}$.
- Angular displacement is simply $\Delta \theta=\theta_{f}-\theta_{i}$.
- Angular velocity $\omega=\frac{\Delta \theta}{\Delta t}$.
- The official unit of $\omega$ is $\mathrm{rad} / \mathrm{s}$ though in the U.S. we like the $\mathrm{rev} / \mathrm{min}=R P M$.
- To relate linear and angular velocity, we have $v=\omega r$. The angular velocity must be in $\mathrm{rad} / \mathrm{s}$ to use this equation.


## 7.2 - The Rotation of a Rigid Body

- This is where we say goodbye to the particle model!
- Rigid body - "big" object that doesn't change shape when rotating.
- Every point on a rotating rigid body has the same angular velocity, $\omega$.
- Angular acceleration, $\alpha$ - the rate at which angular velocity changes.
- Graphs for Rotational Motion - A nice reminder of chapter 2, but we probably won't have time to do this in class.
- Every point on a rotating rigid body has two linear accelerations - the centripetal and tangential accelerations.
- Centripetal acceleration - we've studied already. Points toward the center. $a_{c}=\frac{v^{2}}{r}=$ $\omega^{2} r$. Due to changes in direction.
- Tangential acceleration - in the same direction as the linear velocity, $\overrightarrow{\mathbf{v}}$ (and so at $90^{\circ}$ to $\overrightarrow{\mathbf{a}}_{c}$ ). Due to changes in speed. $a_{t}=\alpha r$.

The Quiz is at: www.masteringphysics.com/site/login.html

