Physics 151 Reading
 Assignment for August 29
 Sections 2.3 To 2.5

Please notice that this file is two pages long.

2.3 - Instantaneous Velocity

- Instantaneous Velocity - velocity at one instant of time.
- From now on, velocity $=$ instantaneous. $\frac{\Delta x}{\Delta t}=$ average velocity.
- Instantaneous velocity still slope of position-versus-time graph.
- Watch out for this procedure at the bottom of page 39. Even though the textbook does a numerical example, we rarely have enough information in our problems to get the correct value for velocity.
- Displacement still area under the velocity-versus-time graph.

2.4-Acceleration

- Acceleration - rate at which velocity changes.
- $a_{x}=\frac{\Delta v_{x}}{\Delta t}$ - Actually only true for constant acceleration motion. Luckily, that's the only type we'll do.
- Unit of acceleration: $\frac{m / s}{s}=m / s^{2}$.
- Acceleration is the slope of the velocity-versus-time graph.
- The sign (and therefore direction) of acceleration is tricky. Read this carefully.

2.5-Constant Acceleration

- You will be expected to know and be able to use the three equations of motion on page 45 for the rest of your physics studies. For now, learn them and try to understand what they mean. We'll practice using them in problem solving in the next section.
- For constant acceleration, the velocity-versus-time graph is a straight line and the position-versus-time graph is a parabola.

