September 12, Week 4

Physics 151
Today: Chapter 3: 2D Motion

Homework Assignment \#4 - Due September 14.
Mastering Physics: 7 problems from chapter 3.
Written Questions: 3.4, 3.69
The motion diagram for problem 3.4 can be found in the homework file on the webpage for convenient printing.

Thursday office hours, 2:00-6:00.

Exam \#1 - Monday, September 17.
Practice Exam Available on Website.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Velocity Components

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Speed is the magnitude of the velocity vector $\Rightarrow v=\sqrt{v_{x}^{2}+v_{y}^{2}}$

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.

Gravity pulls straight down, so it causes acceleration in the y-direction only.

$$
a_{x}=0, a_{y}=-g \quad(\text { Down is negative })
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t}
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
\begin{aligned}
& a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change } \\
& v_{x} \uparrow
\end{aligned}
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t}
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

$$
\begin{aligned}
& v_{i}=\text { launch speed } \\
& \theta=\text { launch angle }
\end{aligned}
$$

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

$$
\begin{aligned}
& v_{i}=\text { launch speed } \\
& \theta=\text { launch angle }
\end{aligned}
$$

$$
\left(v_{x}\right)_{i}=v_{i} \cos \theta
$$

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

$$
\begin{aligned}
& v_{i}=\text { launch speed } \\
& \theta=\text { launch angle }
\end{aligned}
$$

$$
\left(v_{x}\right)_{i}=v_{i} \cos \theta
$$

$$
\left(v_{y}\right)_{i}=v_{i} \sin \theta
$$

Summary

Projectile Equations

$a_{x}=0$	$a_{y}=-g$
$\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}$	$\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g \Delta t$
$x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t$	$y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g \Delta t^{2}$
$\left(v_{x}\right)_{i}=v_{i} \cos \theta$	$\left(v_{y}\right)_{i}=v_{i} \sin \theta$

