which is seen to be a sum of terms that are harmonics of the base frequency

f=c/2L.

Traveling Waves on the String

Plucking one bead (with large enough N) creates pulses that travel in both
directions along the string, reflecting off the ends with a change of sign
but with little or no change in shape. Another trigonometry identity you
thought you would never need quickly reveals the nature of the waves
propagated by the string. The identity is

1
sin Acos B = 5 [sin(A — B) + sin(A + B)]. (8.18)
Now write

yu(t) = sink,x cos 27 f,t = % {sin [k, (x — ct)] + sin [k, (x + ct)]},

where we have used 27 f, = ck,. We notice that this is a function of
x + ct plus a function of x — ct. Suppose we add two solutions—that is,
two different modes—say, the combination & ¥,,(t) + B ym(t). This too is a
function of x 4 ¢t plus a function of x — ct. In fact, we can add any number
of the modes together and this will still be true. Therefore, since we can
make any shape by adding up the sinusoidal modes, the most general wave
we can have traveling on the string is

i, £) = flx—ct) 4+ glx 4 ct), (8.20)

that is, some fixed shape traveling to the right and some other fixed shape
traveling to the left. The assembly of beads has now given birth to traveling
waves!

Loaded String illustrates these points with great finesse. Pick a large
number of beads, turn damping off, and shape the string any way you
choose. Using Display Left and Right, the left-traveling and right-traveling
waves are shown in color below the picture of the total wave—in other
words, the sum of the left- and right-traveling waves. Because the applet as-
sumes the initial bead velocities are zero, there are always equal amplitude
left- and right-moving waves present if you shape the string by hand. It is
very instructive also to select Display Modes and move the mouse pointer
over the amplitude stalks to see the shape and contributing amplitude of
each mode required to generate the initial shape.




Equation 8.19 makes clear that a sinusoidal standing wave, described as a
sinusoidal shape function sin k,x multiplied by a sinusoidal time function
sin 27 fut, is in fact a sum of two counterpropagating sinusoidal traveling
waves of equal amplitude.

Fourier’s theorem describes the decomposition of any function into a sum
of sinusoids. Initially, what concerned us was a time signal arriving, for
example, at a microphone. Now, we have seen that Fourier’s theorem is
also describing the initial shape of the string, that is, a function of position
along the string. Fourier’s theorem tells us that any shape of the string
can be represented as a linear combination of some or, if needed, all of
the modes. Each mode is a standing wave, sinusoidal in shape, oscillating
sinusoidally in time.

Starting with one -and then a few vibrating beads, and ending with
a continuous string and its collective motion, has led us through much
that is of wide application to sound and vibration. Given enough beads,
we get collective, long-wavelength sinusoidal periodic vibrations that are
themselves harmonic oscillators, with the mass and springiness distributed
over the vibrating string.

In chapter 1, we motivated how sound waves are generated by the
pushing and shoving of adjacent air cells. Now, we have seen that wave
behavior arises in a very explicit model of a stretched string, its parts—
namely, little beads connected by tensioned filament—playing the role of
the air cells introduced in connection with sound propagation. In analogy
with the air cells, they pull their neighbors up and down as they are
themselves pulled. The results of this tug-of-war include the harmonic
modes of a string tied down at both ends, together with right-and left-
propagating pulses.

Up to now, we have skirted an important issue: the string ends have been
fixed, as is normally the case in musical instruments. Nonetheless, we
should consider the possibility of free ends, arranged by connecting the
end of the string to a small massless ring allowed to frictionlessly ride
up and down a vertical post. Pulses behave differently when they meet a
free versus a fixed end, in analogy to pressure pulses in the air columns
arriving at closed and open ends of tubes. It is best to think of the string
displacement as analogous to pressure: positive displacement (positive y) of
the string corresponds to compression above the background atmospheric




Once a sound is recorded, it can be
analyzed for its amplitude and fre-
quency content. This is done as fo-
llows: Using Audacity, Amadeus,

or a similar program, record a pluck
of the string in the Loaded String
applet for a few seconds. If you use
Audacity, set the sample rate for 8000
or 16,000 in Preferences. This has the
effect of emphasizing the lower fre-
quency regions in the spectrum to

be calculated later. Create a system
of beads, and then pluck the system
after checking the Clear button and
setting Mouse = Shape String. Notice
the difference in tone when different
beads are plucked, and notice too that
the amplitude stalks are different in
each case. Starting with your recor-
ding in Audacity, select Analyze . ..
Plot Spectrum from the top menu
bar. You should get a series of peaks,
as in figure 8.9, each one correspond-
ing to the frequency of one of the no-
rmal modes of the bead system that
have all been simultaneously excited
with your pluck. You can check the
veracity of the whole arrangement by
going back to the applet and using
the amplitude stalks to create the
initial conditions for the bead system.

pressure, and negative displacement corresponds to rarefaction. Using this
analogy, a string tied down at the end corresponds to an open tube, where
the pressure is being held fixed at the background atmospheric pressure.
Therefore, we expect a pulse arriving at a fixed end of the string to return
inverted, just like the pressure pulses did at the open end of the tube. You
can easily check this in Loaded String, by launching a pluck in the middle
using many beads. This will send a right-traveling wave and a left-traveling
wave heading toward the fixed ends, which will bounce off with a change
of sign. Physically, traveling pulses in a string can be created, for example,
by plucking or shaking one end.

frequencies being nearly equally
spaced. If, however, you use higher
frequencies in making your wave-
forms, the resulting shape is not
nearly periodic. The reason for this
is the unequal spacing of the higher
frequencies, which have been ex-
cited if you choose them among the
amplitudes, or if you pluck only a
single bead, which does the same
thing.

The corresponding spectrum
in Audacity should reflect the sta-
Iks you picked. This will build
confidence in the capabilities of
the sound analysis program. If
you create waveforms using only
the lower frequency amplitudes,
leaving the higher frequency mod-
es undisturbed, the wave will be
approximately periodic. This
is a direct result of the excited

Experiments with a 30-bead string in Loaded String and Audacity. Two plucks were
created in Loaded String (bottom); the sound output was captured and fed into
Audacity (top) for a waveform and spectrum analysis. (Upper left) Case A: Waveform
of the sound recording for the case of a sharp pluck of the last bead on the string, It is
highly nonrepetitive. (Lower left) A 30-bead system showing the initial pluck and the
resulting amplitudes, all of which are quite low but nonzero. (Upper right) Case A:
spectrum of the sound recorded for the sharp pluck. Notice the presence of many
peaks at high frequency, and also that the peaks are roughly equally spaced at lower
frequency, but pile up at high frequency. This plot is linear on the frequency scale,
but logarithmic in the sound amplitudes, so that very small amplitudes are magnified
compared to larger ones. At low frequency, a 60 Hz peak is due to ambient noise in
the room, a quite common source of noise coming from alternating current power.
(Upper left) Case B: Waveform for the case of only five of the lowest modes excited.
Notice that the waveform is nearly periodic. (Lower right) Screenshot of the 30-bead
system with these initial amplitudes and displacement. (Upper right) Case B:
Spectrum showing five strong peaks corresponding to the five amplitudes initially
selected. The populated peaks are nearly equally spaced. The peak near 60 Hz,
closest to the origin, should be discounted as electrical hum. The sound file for both
cases is available in 30beads.wav.




Equation 8.15 carries another surprise: any shape we choose for the string

initially will be repeated periodically at the frequency f;

= c¢/2L. This

is simply because all the cosines in equation 8.15 are periodic with the
same period T = 1/f;. This can be verified in Loaded String using a large
number of beads, and being careful not to excite the highest frequency
modes. The reason for this exclusion is that these modes are increasingly
inharmonic, and only if the modes have frequencies that are integer multi-
ples of a given fundamental frequency will the shape be perfectly periodic.
If, instead, 20 or 30 beads are taken and plucked rather sharply, the
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shape is only approximately regained after one period, and the subsequent
attempts degrade after that.

If the normal modes of a system have frequencies that are integer
multiples of a given (fundamental) frequency, the motion will always
be periodic. Sound produced by the vibrating body by any mecha-
nism will also be periodic in time.

We have seen that ideal strings have a harmonic spectrum, and we shall
see that (ideal) air columns in tubes do also. Equally spaced partials (called
a harmonic spectrum) are the exception rather than the rule, and in fact
never exactly true of real objects, although musical instruments approach
this ideal fairly well.

The Imperfect String

Up to now, we have considered a uniform string of beads or a continuous
string that has a uniform mass density p. Successive modes are perfectly
evenly spaced in frequency, and their shape is sinusoidal. What if the string
is imperfect? We can’t exhaust this topic here, which is quite rich and
subtle, but we consider two scenarios: First, we place an extra, heavy bead
in the middle of an otherwise perfectly uniform string. Second, we consider
the consequences of finite thickness of real strings and wires.

Unfortunately, the “heavy bead in the center” scenario cannot be arranged
in Loaded String, but this is easily done in reality if you have a stringed
instrument around, using a very small piece of putty or the material used
for sticking pictures up on walls. The results are dramatic and, for a typical
violin string, are already quite apparent for a piece of putty as small as 2
mm on a side. The exact center of a uniform string tied at both ends is
a special place: all the even modes—the second, fourth, sixth, and so on
partials—have a node there; the string does not move at that point. The
shape of any specific mode and its frequency do not change if any of its
nodes is tied down: it is already tying itself down, in effect. It does not
matter if we place a weight, the extra heavy bead, at the node. The bead
would not move, and the string would not “know" that the bead is there.
This is not true of the odd modes, which all have an antinode at the
center of the string. The heavy bead makes the odd modes oscillate more
slowly—roughly speaking, the formula 27 f = (K /m)'/? applies, where K
is the force constant resisting deformation of the string, and m is the mass.




By adding a heavy bead, we are increasing the mass of those modes that
move the bead, without increasing the resistance to bending. The frequency
would be expected to drop.

The upshot of these arguments is that the even modes (2, 4, 6, . . .) are
not changed by the presence of the heavy bead or putty, but the odd modes
(1,3, 5,...)are lowered in frequency. Perfect even spacing of the successive
mode frequencies is ruined. Plucking the string results in a strange, sour
note. If the extra load is heavy enough (still very small though), the string
refuses to bow under the usual range of pressures on the bow; a screech is
heard instead.

Ruination of the equal spacing of frequencies also spells ruination of
periodicity of the shape of the string. Any pluck that activates both the
even and the odd partials involves modes not all of which are oscillating at
frequencies that are integer multiples of a fixed frequency. The string will
not regain its shape periodically. Plucking the string in the center excites
only odd modes (n = 1,3,5, .. .), but it turns out that these are not
equally shifted down by the heavy bead, so even that special pluck is not
periodic.

A real string has thickness and resists bending of its own accord, indepen-
dent of the tension. For low-frequency, long-wavelength vibrations, this
does not make much difference, since the curvatures of the string are low.
However, at higher frequencies and shorter wavelengths, the bending is
more severe, since so many wavelengths are packed into the length of the
string. This extra resistance to bending sends the frequencies of a real string
higher than they would be for the ideal string.

Membranes as Stretched Bead-filament Systems

In complete analogy with the string, a two-dimensional thin stretched
membrane may be constructed from an array of beads and filaments under
tension. The beads are allowed to vibrate vertically, exerting forces on each
other in exact analogy to the string. Once again, for N beads there are N
modes, each with a different frequency. As the number of beads grows, the
new membrane modes recapitulate all the old ones and add new ones, just
asin the case of a string. Figure 8.10 shows a rectangular array, but the array
can be made circular or indeed of any shape. None of these shapes has an
equally spaced, or harmonic, spectrum. This corresponds with the fact that
drumheads when struck don’t give musical tones in the sense of a plucked
string, although the degree of dissonance depends strongly on where the

-




An array of beads on stretched filament
vibrates in one of its modes. This mode
approximates the smooth membrane that
would result if a very large number of
beads were used. A nodal line is seen, as
indicated by the gray (uncolored) beads.
There are two other nodal lines running in
a direction perpendicular to this one,
between rows of beads.

membrane is hit, which affects the amount each of the modes is excited.
Section 15.8 has a discussion of these effects in the case of a kettle drum.

The tension T is assumed uniform in all directions along the membrane,
and the density of the membrane is p, given in kg/m?. Then the wave
speed is ¢ = (T/p)"/2. Paul Falstad’s Oscillating Membrane simulates a
rectangular or square membrane, showing the shape and motion of various
individual modes and the evolution of various kinds of plucks and hits. It
also supplies the sound appropriate to each mode or combination of modes
(corresponding to a strike somewhere on the membrane). Each mode has
a shape that is actually a product of sinusoids, one in x and another in y.
The motion of the membrane at each point is sinusoidal in time, at the
frequency of the mode.

It is immediately apparent upon striking the membrane that the spec-
trum is not a harmonic series. The timbre (see chapter 24) depends on
where the membrane is hit, and with what kind of stick or mallet. Unlike
the Loaded String applet, Oscillating Membrane does not provide frequen-
cies for a finite number of beads, but rather for the continuous membrane.

A typical spectrum is shown in figure 8.11. Hundreds of mode fre-
quencies pile up as frequency increases. The rate of decay of the sound
can be adjusted in Oscillating Membrane from slow to fast. Fast decay
of the sound renders the spectral features broader, in agreement with
the time-frequency uncertainty principle. This is seen by comparing the
red and black spectra (obtained by capturing the sound from Oscillating
Membrane and conducting a spectrum analysis for the same strike point
on the membrane with different damping times selected). We consider
membranes and shells (that is, thicker membranes) again in chapter 15.
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A Metal Chair

We compare the N-bead string and the membrane to hitting the seat
of a metal folding chair with a knuckle. The waveform and the power
spectrum of the sound are shown in figure 8.12. The spectrum crudely
resembles that of a membrane. There are narrow peaks at many different
frequencies—meaning that the clang of the chair (sound file chair.wav on
whyyouhearwhatyouhear.com) is the sum of many pure sine tones. The
chair, if sinusoidally driven at just one of these frequencies, would sound a
pure sine tone even after the drive was turned off. (We will be looking into
this sort of scenario in the next chapter.)

At the beginning of the discussion of beaded strings, we noted that
it was worthwhile to spend time building them up because they show
the way to more general systems consisting of many different modes and
parts, oscillating at many different frequencies. The modes of the chair that
show up as sharp peaks in the spectrum in figure 8.12 are each analogous
to one of the string modes. The chair spectrum is far from harmonic,
and certainly it is more complicated, but the principle of many modes at
different frequencies, each its own harmonic oscillator and each excited in
proportion to its amplitude at striking point, is the same.

Decomposing Complex Vibrations

One of the key concepts in this book is the notion that objects can vibrate
in many ways, or modes, individually or in combination. Fach mode
has a different frequency, and each has a unique pattern of deformation
that it repeats sinusoidally at the frequency of that mode. Modes can be
combined; the sum of several modes is nothing more and nothing less than

B

Power spectrum of the sound recorded
from a hit of the membrane in Oscillating
Membrane. Red: strong damping. Black:
weak damping.
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Sound pressure versus time and the power spectrum computed from its autocorrelation
for a metal folding chair struck with a knuckle in the middle of the seat. The Q values
calculated from f/ Af vary from about 100 to over 1000. File: chair.wav on ‘
whyyouhearwhatyouhear.com.

its parts.* Our first hard encounter with this principle was with the string; a
good review of the concepts that we encounter again here can be found
by returning to the Loaded String applet and playing with the number
of modes excited various ways and listening to the results. Each mode
ultimately generates sound waves in air with greater or lesser efficiency,
depending on the nature of the body that the string is attached to. The body
does most of the pushing of air and is responsible for almost all the sound
production. Linear superposition asserts that each mode is undisturbed by
whether the others are activated or not.

The notion of simultaneous vibration of many modes of the same object,
each with a shape and frequency of its own, was a difficult concept for some
very smart people, partly because the notion of individual pure modes was
not well understood. The motion can look complicated, making it difficult
to accept that it is the sum of much simpler oscillations that are sinusoidal
in time.

*At least, this defines so-called linear systems, which are usually a good approximation for
small-amplitude vibrations.




The Minim Friar Marin Mersenne, educated by Jesuits, was an unde-
niable genius and strong supporter (and also a bit of a scientific com-
petitor) of his contemporary, Galileo. (We first encountered Mersenne
in chapter 2.) We have already mentioned that Mersenne made the first
measurements of the speed of sound, using echoes. He was nonetheless
confused about simultaneous vibrations of many different modes of the
same object. He found them “impossible to imagine.” (No professor,
therefore, should ever get frustrated with a student facing the same
difficulty!) Even though he could hear up to five partials in a single complex
tone, he could not quite come to accept that a string was somehow vibrating
in at least five ways at once.

This point was clearer to the younger mathematician and physicist
Joseph Sauveur (1653-1716), who coined the terms fundamental and
harmonic in 1701. A good namer of things, Sauveur also coined the terms
node and acoustics. (Naming phenomena is a surprisingly important part
of science, often earning the namer a lot of credit, whether or not they
were the first to discover the phenomenon.) Sauveur explained that in pure
upper partials a string vibrates in parts, which is quite true: the motion of
the string at the second partial is in two halves, with a node in the middle.
He was the first to associate the faint upper partials that could be heard
when the string is plucked with specific modes of the string. He did not
shy away from saying that the these modes could exist simultaneously on
the string. This has to be one of the most fundamental discoveries in all
of the history of musical sound, yet it is fairly difficult to find reference to
it. Portraits of him seem to be scarce to nonexistent. He was mute until
the age of five and quite hearing impaired, certainly an unexpected profile
for someone who made such fundamental contributions to sound and its
perception.

The nodal point at the center of the string belonging to the second mode
might just as well be pinned down in that mode and indeed all the even
modes, since it isn’t moving anyway. Once pinned, we see that the second
mode is really the fundamental mode of a string of half the length. The
frequency is doubled compared to the fundamental of the whole string,
since f oc 1/L, where L is the length between the pinned ends. Sauveur
explained correctly that the motion of the second partial with its two parts
could be going on while the lower partial with twice the wavelength was
also activated. It is possible to check this idea by watching the motion of
the nodal point of the second partial with the first partial also excited: that
point should execute pure single-frequency sinusoidal motion, since the
second partial is not causing any displacement there.

Try this in Loaded String. When the program starts, only the lowest
mode is excited. Drag the adjacent stalk for the second mode, and the
string will distort away from its sinusoidal shape. Then, roll the mouse
pointer over the first stalk, whereupon the first mode will appear in yellow.
The white string position and the yellow first-mode position will intersect
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halfway along the string at all times, since the second mode adds nothing
there to the overall motion, being a node of the second mode. The same
will hold true if more even-numbered mode stalks are added—the 4th, 6th,
and so on. If at any time you subtract the lower partial motion, you just
recover the first partial, which is, so to speak, “riding on the back” of the
first partial. To an excellent approximation, partials live independent lives,
almost as if they were excited on two different strings, yet they share the
same string simultaneously. This is linear superposition.



