Is it not strange that sheep’s guts should hale souls out of men’s bodies?

—William Shakespeare, Much Ado about Nothing

A stretched string is in some ways like many other vibrating objects, but
in other ways it is very special, making it an ideal source of vibrational
energy for musical instruments. The string becomes a drive for the body
or sounding board, which produces almost all the sound.

Our object in this chapter is to systematically construct a string under
tension. We do so by treating the string as little beads connected to each
other by a massless filament under tension. If our only purpose were to
understand string vibrations, we would not bother to build up a string
meticulously from little beads under tension. But this way, we learn how
assemblies of independent parts, connected by forces, can vibrate. We
discover how all the parts can collectively conspire to produce simple
and nearly universal oscillations and waves of choreographed motion.
A number of new principles will emerge, all extremely useful for a deep
understanding of sound.

In the next pages, we encounter standing waves, traveling waves, fre-
quencies of vibration and the dependence of frequency on tension, mass,
length, superposition, periodic and aperiodic vibrations, and the tones
that emerge from different types of vibration. The suggested interactive
applets and sound analysis tools provided are key to reaching a deeper
understanding.

A string is essentially a one-dimensional object. We will find that the
ideal string possesses a perfectly harmonic (equally spaced in frequency; all
frequencies an integer multiple of the fundamental) series of modes. Real
strings have some thickness, ruining the perfectly harmonic frequencies we
shall derive here. Far from a bug, the mistuned partials of real strings are

165




The lowest vibrational mode of a string of
N beads, connected by a filament under
tension. The gray outline shows the lower
extent of the oscillation; the black is the
upper extent. At both extremes, the beads
are all momentarily at rest.

a feature that we have grown to love and expect. A piano sounds artificial
without them.!

We start with a single bead of mass M under tension, held by two
massless elastic filaments. This bead is next split into two beads, each of half
the weight, dividing the filament into three equal lengths, and eventually
into N equally spaced beads of mass m = M/N, distributing the beads
uniformly over the same length of string, making a “necklace.” As N gets
large, the assembly starts to look like a continuous object for most purposes.
As we build up a string from ever more and ever lighter beads, the string is
always kept the same length, L. The beads get closer together, a distance
£ = L/(N + 1) between beads. The situation is depicted in figure 8.1.
We start with a single bead of mass M tied between two walls a distance
L apart by stretched massless filaments. We consider only up-and-down
oscillation of the bead in the plane of the paper. After we see how this
moves (a harmonic oscillator), we will divide the bead into two beads
each of mass M/2, keeping the total mass the same. Now there will be
two independent ways, or modes, for the two beads to vibrate, each with a
different frequency. Each of these modes is itself a harmonic oscillator. The
oscillation involves a choreography of more than one bead, but nonetheless
there is a mass being displaced and a force of resistance proportional to the
displacement—the key ingredients for a harmonic oscillation.

Each time a bead is added, we rebuild the whole necklace and find N
modes of vibration, each with a unique shape and frequency. There is a
pattern that develops: for N beads, the first N — 1 modes pay homage, so
to speak, to all the modes of N — 1 beads, mimicking them as closely as
possible, but the highest frequency mode in the list is always a “new” mode.

The partials of a piano string are slightly sharp compared to the integer multiples of the lowest
partial. This effect is weak for the first few partials, but grows more important for the higher
partials. The higher partials possess shorter wavelength oscillations on the string, bending it in
tighter curves. If the diameter of the string gets to be noticeable on the scale of the wavelength on
the string, it starts to act a little like a bar rather than a string, stiffening its bending resistance and
raising its frequency. We will ignore the finite thickness in this chapter.
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As we build up more complex objects from simple ones, we will see
how they become simple again when they vibrate in collective modes,
where their constituent parts act in concert. We rely in part on firsthand
experience with Paul Falstad’s immediately accessible Loaded String applet
and a sound recording and analysis tool such as Audacity, both free on the
Internet and linked on whyyouhearwhatyouhear.com.

Single Bead

We start with a single bead held by filaments between two walls with
tension. The bead is considered a mass point with no internal structure
of its own. The tension is supplied by elastic filaments that have no mass of
their own.

Figure 8.2 shows a single bead held by two elastic filaments under tension.
Pulling vertically on the bead (we call the displacement y, which can be
positive or negative), a restoring force fesrore o y is felt pulling the bead
back toward its equilibrium, horizontal position (y = 0). The bead is under
tension being pulled to the left by the left portion of the filament and to
the right by the right portion. Tension is a force; it has a magnitude and
a direction. A force communicated by a string or filament is necessarily
aligned along it. A filament is strong only along its own length, it cannot
support any force perpendicular to itself. For the single bead at rest, the
two forces, one from each filament, are equal in magnitude and opposite
in direction, so they cancel. Then, according to Newton’s second law of
motion, there is no movement, no acceleration.

If the bead is displaced vertically, part of the force from each side of the
filament points down, as seen in figure 8.2. For small displacements, the
magnitudes of the forces from each filament to either side of the bead are
the same as before, but now the forces are no longer exactly opposite. We
represent the force by an arrow; we must always point the arrow along the

Forces on a single bead of mass M, held by
two elastic filaments under tension and
attached to rigid walls at either end. The
downward force, frestore, is proportional to y
for y not too large.




filament. We take the length of the arrow proportional to the magnitude of
the force.

The vertical part of the force does not find a canceling force; this is the
restoring force. When the bead is released, the bead accelerates downward
according to Newton’s law, frestore = Ma, where frestore 15 the net force
on the bead, M is the mass, and a is the acceleration, in the direction of
the net force. If the bead was first at rest in the position shown, it will
start moving down at increasing speed. (Gravity acceleration is normally
very weak compared to acceleration due to tension; we ignore gravity here.)
As the bead moves down, the angle made by the two filaments decreases,
vanishing as the bead passes the midpoint. But the bead is moving fast:
it overshoots into negative territory, now feeling a restoring force in the
opposite direction, slowing it down. It comes to a stop at the position
shown by the dotted line at the bottom of figure 8.2.

It is important to remember that the bead is always under tension from
the filaments. The tension in each filament increases only very slightly (we
ignore the effect) as the bead is displaced. It is the change in the direction
of the force that drives string vibration; it remains always aligned with the
filament.

Figure 8.2 can be used to show that the force is proportional to the
displacement, y:

frestare = Ma = —k};’ (8.1)

where k is the constant of proportionality, and the minus sign is there
because the force is toward negative y when the displacement is positive.
It is very easy to show, with a little trigonometry, that k = 4T /L, where
T is the tension, and L is the length of the string. The bead and filament
system is thus a member of a very large and important class of vibrating
objects mentioned earlier in connection with equations 3.1 and 3.3: the
harmonic oscillator. The distinguishing feature of such[ vibrations is that
the force on the object is proportional to the displacement, and in the
opposite direction. A tensioned filament makes a good linear spring against
displacement of the bead.

The motion of the bead is

1 [k 1 [aT
y(t) = yocos(2m ft + 8); f:_zg =5t =

where y, is the amplitude of oscillation, (the maximum displacement
away from 0), and § is a phase shift, both of which depend on the initial
conditions. Initial conditions are the initial position and velocity that the
bead is given. The simplest case, sufficient for most of our purposes, is to




assume that the bead was displaced by an amount yy and at rest at time
t=0. Then yj is the initial displacement and § =0. The sinusoidal function
has appeared again.

Two Beads

The case of two beads is a watershed: a reader comfortable with the motion
of two beads is “good to go” to any number of beads and much more
complex objects. We again consider only vertical motion for each bead.
What can happen for two beads? Is sinusoidal motion obsolete for more
complex objects?

With a little more algebra than we care to go into here, we can show there
are now two modes, each with a different frequency and a unique “shape,”
which we shall define. Each mode is sinusoidal in the following way: pick
any bead and follow its vertical motion over time assuming just one mode
is excited and therefore just one frequency is present. That motion will be
exactly sinusoidal (or it will not be moving at all—that is, a nodal bead) at
the frequency of the mode.

Paul Falstad’s Loaded String applet
follows exactly the program we
have just set out. The number of
beads (called loads) can be set from
one to hundreds with a slider. It is
strongly suggested that you experi-
ment with this applet. The reward
for the time spent will be intuition

filaments are shorter, being divided
into three equal segments instead of
two, but the tension is not changed.
In the Loaded String applet, there are
two “stalks” at the bottom left of the
screen for two beads; each controls
the amount of its corresponding
pure, sinusoidal mode. Click the

and understanding for complex vib-
rating objects.

Starting with one bead, notice the
frequency increase as the tension is
increased. Leave external forces and
damping off; we get to those in the
next chapter. The sound of a harmo-
nic oscillator is the pure but boring
sinusoid. There is one mode, one
frequency.

When the number of beads is two,
the mass of each bead is M/2. The

Clear button, and then drag the
leftmost stalk up. The two beads rise
together, as in the second row of
figure 8.3. This is the shape of the
lower frequency of the two modes.
The way we define shape, pulling the
stalk higher or even (with the phase
stalks) making the beads go below the
line, does not change the shape;
rather, this is changing the amplitude
of the mode. Each mode has a unique
shape.

Clear the Stop option, and watch
the subsequent oscillation. Note that
the initial position is regained perio-
dically. The shape remains the same

The two possible modes of a two-bead
system, with the lowest frequency mode
assigned a frequency of 1. The beads in
black are shown at rest in their deformed
positions. The gray beads and lines show
the limit of the excursion at one half
period; this is a symmetric reflection
about the horizontal dotted line.




(continued)

throughout the oscillation: at each
time, the beads are in a position that
could have been obtained by
multiplying the initial shape by a
constant. The motion of each bead is
sinusoidal, all moving at the same
frequency starting from different
positions: the result is a concerted,
choreographed dance of the two
masses. Click Play, and you will hear
a pure sine tone at the frequency of
oscillation and see the periodic
motion of the two beads.

Click Clear again, and raise the
second stalk. Now a different type of
vibration is seen, having a new shape
and a higher frequency. Notice that
the second mode is oscillating more
rapidly than the first. If you look at
how the filaments are oriented re-
lative to the masses, you can see
why the force is higher and there-
fore the acceleration is greater than
in the first mode, leading to higher
frequency and a larger force cons-
tant. The relative frequencies of these
two modes is accurate, although the
frequency of the lower mode has been
set equal to the frequency of the
mode with one bead. Again the
motion of each atom is sinusoidal,
but the “choreography” the atoms is
different.

If this much is plausible to you,
there is only one more aspect to
discuss: combinations of the two
modes simultaneously.

Compound oscillation, wherein
more than one mode is excited at the
same time, can easily be produced
with the Mouse = Pluck String
option. Or you can pull up two (or
more, for more beads) stalks at the
bottom-left corner, creating a com-
bination of pure modes. Last, you
can select the Mouse = Shape String
option and make any initial shape for
the string.

Exciting more than one mode by
plucking will create a shape distinct
from any of the “pure mode” shapes
discussed earlier. Each excited mode
oscillates sinusoidally, but since
they have different frequencies the
modes are combining with a relative
phase of their respective oscillations
that is continuously changing over
time. As a result, the shape taken by
the two beads changes with time. The
two pure mode frequencies are not
simply related to each other, and as
aresult the combined choreography
of the beads after such a “pluck” is
not periodic. Selecting Play may fuse
the two frequencies to give a single,
somewhat unmusical tone, or the

two component sinusoids may
stand out instead; this will depend
somewhat on the listener and

the context (see chapter 23).

The two modes, in various
combinations differing in the
amplitude of each mode and their
relative phase, can describe any initial
shape for two beads that is possible.
Figure 8.3 makes clear how two pure
modes combine. As you pluck the
beads, thus shaping the “string,” the
applet automatically finds the right
combination of the pure modes to
produce your pluck and reveals that
combination as a set of amplitudes
in the lower left of the panel. If you
hover the mouse pointer over one of
the stalks, the stalk turns yellow, and
the appropriate pure mode panel
above also turns yellow, revealing the
pattern of vibration associated to that
stalk—that is, the pure or “normal”
mode, as it is called. If you hover the
mouse pointer over the stalk while
the application is animating the
vibration, the phase and amplitude
of the individual normal mode
taking part in the combination is
shown. It is difficult to imagine a
more instructive applet to illustrate
these points.

For two beads, we have two modes of vibration, instead of one. This leads
us to suspect there will be N different modes for N beads. A pure mode is
identified as an oscillation in which the parts of the object (beads in this
case) moved sinusoidally with a single frequency. A stylus attached to any
one of the beads as it oscillates in one of the pure normal modes traces out
a sinusoid on graph paper moving from right to left (see figure 8.4 for the




7 In a pure mode, individual beads move
'.EO Y sinusoidally and share the same frequency.
The chart of any given bead’s motion is a

sinusoid, just as it is with a single bead. This
< is true no matter the number of beads.

case of three beads). During the oscillation of a pure mode, the shape does
not change, in the sense defined earlier.

Now that we have come to more complex objects involving several parts,
we see that the the sinusoid still reigns supreme, exactly describing the motion
of each part of the object. To be specific, the ith bead in the nth mode has a
displacement in the y direction that increases

Yni(t) = ap; sin(2m fut).

Note that all the beads for a given mode 7 share the same frequency f,, but
each in general has a different amplitude a,, ;. The same sinusoidal function
multiplies all the amplitudes for a given mode n, showing that indeed the
shape is retained during the oscillation.

Returning to the two-bead case, we see that the lower frequency mode,
wherein both of the beads move together in the same direction, is the
analogue of the only mode that exists for one bead. This is the first example
of the fact that N beads recapitulate all the modes of the N — 1 bead case,
and add one new mode, the one at the highest frequency.

Three Beads

Moving to three beads in Loaded String, we see that indeed the two modes
of the two-bead case are recapitulated by the first two modes of the three-
bead case. The third mode is new. (You can always excite a pure mode by
clearing the screen and then pulling up one of the stalks.) All of these modes
and their analogs for more beads are themselves harmonic oscillators: they
oscillate with different frequencies for different modes, but each mode
retains the same shape throughout the oscillation. The sinusoidal motion
of individual beads is made explicit in figure 8.4, where a red bead and a
green bead are tracing out their motion on moving graph paper.

A given pure mode, with only one stalk raised, will have a pattern of
vibration involving most of the beads, except for the occasional bead that
isn’t moving. Such a bead finds itself at a node of the vibration, a place
Wwhere the periodic, sinusoidal undulation is actually quiescent.




Amplitudes:

I

Modes:

|
%

The addition of two normal modes depicted as abstract amplitude (top) and as the literal
addition of the mode displacements (bottom). In the latter case, the linear addition of
the vertical displacements of the two normal modes on the right gives the shape on the
left, which is made up of both modes. For example, the rightmost bead is up in the first
mode, but down by the same amount in the second, so the addition of the two modes
puts the bead at zero displacement, as it is shown on the left. If you turn on the sound,
you hear two frequencies; these, however, are not musically related—for example,

f, # 2f;, or any such simple ratio. Note that the oscillation of the shape (slow it down if it
is too fast) reveals that it is not periodic; it does not recover its shape in a regular

way.

Combining Modes

Any shape can be reproduced as a combination of all the pure modes,
if the correct amplitudes are used. We illustrate the superposition in the
two-bead case in figure 8.5; it is easy to see exactly how the new shape is
created out of two normal modes. A single bead will oscillate at N different
frequencies at once if N modes are excited.

The idea of combining purely sinusoidal modes to make complex
nonsinusoidal and even nonperiodic motion is a crucial one, a key to the
vibration of real objects under real circumstances. The resulting combined
motion is not usually periodic, even though the component modes are, and
is a sum of sinusoids whose frequencies are normally not commensurate
(do not bear a simple integer or rational ratio to each other).

More Beads

In the case of the string that we are now studying, sinusoids make another
appearance of a different sort. For sufficiently many beads, the shape of
the individual modes starts to trace out a recognizable sinusoid. Even in
the cases with relatively few beads, the beads fall on a curve belonging to
each mode; this curve is exactly the sinusoidal one followed for an infinite
number of beads.




For three beads (figure 8.6), the highest frequency mode is a new shape
compared to the two found for two beads. This shape is recapitulated ever
more smoothly for 4, 5, . .. beads; its sinusoidal shape is clearly apparent
with 4 beads (see figure 8.7). Try these cases in the Loaded String applet.
Choosing 14 to 20 beads or so, clear all of the oscillations, and then set
the amplitudes by lifting the stalks of only the first three or four modes.
Click Play, and you will hear a near-musical tone. The tone is not quite
periodic because the component partials are a little flat compared to equal
spacing. Note that the shape you have created out of the combination of
four modes is nearly repeating itself periodically, with the period being that
of the lowest frequency mode. Fifteen or 20 beads is not quite enough to get
the first few modes to vibrate at frequencies that are almost exactly integer
multiples of the lowest frequency mode. Using 100 beads or more, the first
four or five modes are nearly equally spaced multiples of the fundamental,
lowest mode frequency.

If the mouse is used to pluck the string of N beads in one place, all the
modes are excited, including the higher modes. (The higher frequencies
present can be easily heard.) By the way, this is a very important lesson
in sound production, musical or not: if objects are struck locally, many
higher frequency modes as well as lower frequency modes will be excited.
If, however, the object is struck with a soft, rounded hammer, the tendency
will be to excite only lower frequency modes. It is easy to see why: in order
to describe the deformation owing to a blow with a sharp object, the short
wavelengths will be required because they oscillate faster and are essential
to reproduce sharp changes in the shape of the object. This can easily be
checked in Loaded String using the Shape String option and plucking a
single bead versus an initial deformation that involves displacing several
adjacent beads in such a way as to trace out a smooth shape. The proof of
the difference will be heard as well as seen in the height of the amplitude
stalks.

The tone produced by a sharp pluck is a little sour and is especially
defective at the higher frequencies due to the presence of high modes that
are flat compared to their counterparts in an ideal string. The tension can
be adjusted to raise or lower the pitch, but the note is still sour. (The fact
that there is a definite pitch at all, and exactly what that pitch is, since the
time signal is not periodic due to inharmonic partials, is an intriguing and
subtle question, to which we will devote chapter 23.)

It is instructive to actually measure the spectrum of frequencies coming
out of a laptop speaker when the sound is turned on in Loaded String. Most
computers can record themselves with their own built-in microphone at
the same time they are producing sound, or more directly with software

-
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The three modes of a three-bead system,
with frequency ratios relative to the lowest
frequency mode.




Building up a continuous string starting from beads connected by filament. All the possible

modes for one through four beads are shown explicitly. The red curve is the analogous sinusoidal

mode for an infinite number of beads. Note that the beads always fall on the N = oo smooth sinu-

soidal shapes. As N — oo, the mode separations all become 100 Hz. The actual mode separations

for N = 2, 3, and 4 beads are shown in red. In all cases, the total mass of all the beads M is held

fixed. Each mode is a harmonic oscillator, and once excited it executes sinusoidal motion in iso- g
lation of its companion modes with the same number of beads. For N beads, there are N different

modes of different frequency. For a small number of beads, the various modes are quite inhar-

monic (unequally spaced), and the beads, if plucked, sound more like a bell or chime than a 100 Hz .

plucked string. As the number of beads grows, the lower modes become more nearly evenly /T\
spaced, and hitting the string with a wide, smooth hammer (which excites only lower modes) ’ o
results in a periodic string-like tone. —- =

utilities. This recorded sound can in turn be analyzed. The sound files,
waveforms, and spectra for two different kinds of pluck of a 30-bead string
are given at whyyouhearwhatyouhear.com. A 7-bead string was recorded
and analyzed in figure 8.8.

The inharmonic partials (inharmonic meaning that the partial frequen-
cies are not equally spaced) that we find for relatively few beads is typical
of vibrating systems. If you bang on a piece of metal, you are not likely to
hear a pleasing periodic tone.” The string with N beads is inharmonic in
a systematic way, with the spacing between adjacent frequencies growing
smaller at the top of the spectrum. Typical objects (a string is certainly not
typical) will tend to have more jumbled, seemingly unsystematic spectra.
We will meet systems with inharmonic partials many times again; they are
the norm, not the exception, for vibrating objects. Bells, chimes, and so on
have inharmonic partials, but they are carefully crafted through thickness
and shape adjustments to give a pleasing tone and a desired pitch (which,
as we will see, need correspond to none of the actual mode frequencies).

In spite of the clang one gets by bashing a piece of metal dangled on the
end of a string, it is good to remind ourselves that this noise is no more
and no less than a superposition of sinusoids, each an atom of sound, as
pure as can be.

For N beads, an analysis more detailed than we care to enter into here
shows that the exact frequencies are given by

% N T in ni N T . nw
- — S1 e sin )
"=a VML 2(N +1) 7\ p-L? 2(N +1)

(8.4)

2There are exceptions; see the discussion of Belleplates, section 15.7.
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where M is the total mass of the beads (each bead being of mass M/N), T is
the tension, L is the length of the assembly of beads,and n = 1, 2, ..., N is
an index that tells us which mode we are speaking of, the lowest frequency
being n = 1. We have introduced the density of the-string, p = M/L,
which has units of mass per length.

We are not concerned with the fine details of this formula for the
frequencies, but there are two qualitative aspects that are quite important.
First, we notice that because of the sine function in this formula the mode

Seven-bead string as studied in Falstad’s
Loaded String applet and analyzed in
Amadeus. The initial pluck is shown at the
top, and the resulting power spectrum
stalks according to the applet are shown
just below. The sound was played through
small speakers and recorded by
microphone at the desktop and then
analyzed in Amadeus. The spectrum
corresponds nicely, and clearly shows the
smaller spacing of the mode frequencies at
the top of the spectrum.




frequencies cannot be equally spaced—that is, they cannot be a harmonic
series: the argument of the sine function is equally spaced, but applying
the sine to the argument destroys the equal spacing. Second, for large N
the lowest frequencies are very nearly equally spaced; the number of such
equally spaced frequencies grows with N, so that for a continuous string
with an infinite number of beads the spectrum will be totally harmonic.
This follows from the fact that sin x & x for small x (see box 8.2 for more
details).

Spectrum for a Large Number of Beads

To show that the spectrum becomes equally spaced in the limit of a large
number of beads, we notice that the argument of the sine function,

nm /2(N + 1), becomes small as the number of beads N gets large, for any
fixed n. A very useful approximation to the sine function for small y was given
already in chapter 3:

siny ~ y.
The approximation is better and better, the smaller y is. (Try it on a calculator,

but make sure you are using radians and not degrees.)
Making this approximation in equation 8.4 leads to

N 1k nim
f= 5w )~ B

where, since N/(N + 1) is very close to one for large N,
N i L
fir s = > =,
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where by the symbol — we mean that N is large, which makes
N/(N+1) — L

Equation 8.8 captures the Mersenne laws of vibrating strings: their
frequency is inversely proportional to the length of the string, proportional to
the square root of the tension, and inversely proportional to the square root of
the density of the string per unit length.

Again without proof, we give the formula for the y displacement of each
bead in each of the N modes for N beads:

2 in(jmr)
o =4/ —sin | —— .
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The constant (2/N)'/? is fixed for a fixed number of beads, it just sets the
overall amplitude. Equation 8.9 gives the amplitude for the jth bead in the nth
mode. This is the solution we see when we run the Loaded String applet.

Noticing that the position of the jth bead is given by x; = jL/(N + 1), we

can write

2 NI X;
yjﬂO = N‘ sin I x

This form highlights the fact that the y displacement is a sinusoidal function of
the position of the jth bead. The sine function is seen to play a crucial role in
the shape of the string, even for a finite number of beads.

The all-important relation fA = ¢, where f is the frequency, A is the wave-
length, and ¢ is the speed of the wave, can always be used to determine the third
variable if two others are known. Now we know the frequency f,, of the modes,
and the wavelength A, is determined from equation 8.10: n A, /L = 27,
or Ay =2L/n,n=1,2,.... Then, from equation 8.8 and fA = c, we have

e

We have found that the speed of waves on the string is given in

terms of the tension and the mass density as ¢ = (T/p)"/?, independent of the
mode number, and therefore is independent of the wavelength and frequency,
just as with sound in air. Since (T/p)"/? = ¢, we can write equation 8.8 as

nc
fn o ﬁ
We can now write equation 8.8 as
nc
=

There is much information in this deceptively simple formula. The
frequencies are equally spaced (harmonic). The speed is independent of the
frequency. The Pythagorean rule, that frequency is inversely proportional
to length at the same tension, is also contained in equation 8.13.

Music, no matter from what society, does not by any means restrict
itself to instruments with equally spaced harmonics. To understand the full
gamut of musical sound production, as well as sound made by myriads
of other sources for other reasons, we need to understand the vibrations
of generic objects as much as we do those of strings. We have already
discussed sound production by objects such as surfaces, but we have not
discussed the natural frequencies of vibration of objects like plates and
bells. We do so in chapter 15.




Putting Shape and Time Together

The complete motion for the jth bead in the nth mode is

Yin(t) = y(x;j, t) = a,sin (mzxj> cos(2m fyt + 8,). (8.14)
When N — o0, this becomes

nmw
Yu(x,t) = a, sin (Tx) cos(nme/Lt + 6,), (8.15)

which can be written more simply, by defining k, = nx/L and f, =
nc/2L, as

Yu(x, t) = a, sin(k,x) cos(27 fut + 8,). (8.16)

8, is a phase shift that in general we need to keep track of in order to get
the correct waveform. This is in the form of a shape function, sin (k,x),
multiplied by a time function, cos(27 f,¢ + 8,). The shape of the string in
a pure normal mode is sinusoidal, in the sense mentioned earlier, and the
time dependence is sinusoidal as well. In the #nth mode, each bead oscillates
at exactly the same frequency, frequency f,. The period of the oscillation
Ty, is simply the inverse of the frequency, T, = 1/f,. After this period, the
mode necessarily has returned to its initial position.

Equation 8.13— f, = nc/2L, with ¢ = (T/p)"/?>—is full of implications:

e The string with fixed ends has many distinct modes, each of which
is a sinusoidal vibration corresponding to a collective harmonic
motion.

o The frequencies of the modes for a given string are equally spaced,
being multiples of f, = nc/2L.

e Since f; oc 1/L, if the string length is halved, all other things held
constant, the frequencies will double—that is, go up an octave.
Similarly, a ratio of lengths of 2:3 yields a perfect fifth interval 3:2,
and so on.

e The frequency is doubled by a fourfold increase in tension T.

e The frequency is halved by a fourfold increase in string density (mass
per unit length). This can be done by using heavier material and/or
by making the string thicker.

e Because frequencies are equally spaced, combinations of two or
more modes will oscillate periodically, with the displacement of a
portion of the string becoming a sum of sinusoids of different
frequency.

We have seen how a complex object consisting of many parts (beads,
in this case) can behave simply and coherently, by vibrating in unified




ways we call normal modes. Each normal mode is an independent har-
monic oscillator—every bead or part of the string oscillating sinusoidally
in time. Even a million beads act as a whole, with thousands of beads
making a choreographed sinusoidal motion in each mode. The simplest
mode is the lowest frequency one consisting of half a sine wave moving
up and down with all beads acting in concert. In this way, a kind of
simplicity has been reborn from the potential complexity of having so many
beads.

Humanity has enjoyed stringed instruments for perhaps 20,000 or
100,000 years. It is understandable that we take the perfections of the
stretched string for granted, but it is a miraculous gift that they are
harmonic. It is worth stating that inharmonicity of strings would not be
fixable with frets and fingering changes: the pluck of an inharmonic string
of any length would be like a chime at best.

Combining Modes

It took people a long time to get straight the idea of superposition—that
you can add one mode to another and they just go on doing their thing
independently. This is called linear superposition; we saw it in connection
with waves passing right through each other (even though they have to
interfere when they occupy the same space—it could not be any other way
if they are to survive the “collision" with each other). You can run scenario
A in the lab on Monday (for example, hit a metal plate on the left side), run
scenario B on Tuesday (hit the same metal plate on the right side), collect
the data, and on Wednesday add the data from Monday and Tuesday, using
the moment of the strike as ¢ = 0 in both cases. On Thursday, you can
run both A and B at once, striking the plate on both sides simultaneously,
and collect that data. On Friday, your analysis will reveal that the resulting
sound and motion of the plate is the same, whether you really struck it
in two places at once or added up the sound and motion from individual
strikes on a computer. A good week’s work, and you’ll never forget the
principle of linear superposition.?

The most general motion of the string is a superposition of the pure
modes with amplitudes a, and phases §,—that is,

y(x,t) = aysin(kyx) cos(2m fut + 5,),

*Many physical processes are nonlinear—that is, their response is not in proportion to the
input. Fortunately, sound that we find not too loud is most often created and propagated by linear
rules.

.




