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Fourier analysis of an autocorrelation function to yield the power spectrum. Three
choices of frequency are shown; the black line or black dot reveals the frequency on the
plots and also the value of the transform at that frequency. This spectrum consists of two
peaks, both somewhat broadened. (As we will see shortly, the broadening corresponds
to the decay of the autocorrelation in time, which is clearly visible.)

We have now seen the entire process of getting from signal to auto-
cosrelation and finally to a spectrum. In figure 4.10, we show the process
using color strip calculations from start to finish for a typical signal. This
signal is a short burst, and the spectrum has turned out to be fairly broad
and continuous. No finite set of cosines could be used to represent the
autocorrelation, nor are there just a finite set of frequencies with power.
This is why we needed the color strips and the Fourier analysis—to become
facile with general and typical signals.

With the preceding discussion as pretext, the so-called Wiener-Khinchin
theorem will come as little surprise: it states that the power spectrum and
the autocorrelation are obtainable from one another; specifically, the power
spectrum is the Fourier cosine transform of the autocorrelation function.

The Uncertainty Principle

Strictly periodic signals last forever and are perfectly correlated with
themselves: they repeat at multiples of the period. At the other extreme,
a signal might have no correlation with itself from moment to moment:
knowing the signal at one instant says nothing about it the next; such a
signal is said to correspond to white noise (noise that has power in all




Autocorrelation

Construction of a power spectrum (bottom right), starting from the signal s(t) (top), and
passing through the autocorrelation c(z) (bottom left). This signal is a short burst, but,
apart from this, it is otherwise oscillating at a fixed frequency f,. Starting with the signal,
the autocorrelation is determined as in figure 4.7. From this, the power spectrum p(f) is
determined by multiplying the autocorrelation with cosines of different frequency and
summing the result. In the lower right, the cosine is depicted in the middle strip of the
groups of three. As the frequency increases to the right, the cosine oscillates ever more
rapidly. The first two columns (the autocorrelation and the cosine) are multiplied
together as before, the product is stored in the third column, and the average of the
third column is taken to give the spectrum at the frequency of the cosine. Notice the
evidence of the time-frequency uncertainty principle: the time data is a short pulse, and
therefore the frequency spectrum is broadened.

regions of the audio spectrum). The autocorrelation for white noise has
apeak only at T = 0 and falls immediately to 0 for T # 0.

Most sounds fall somewhere between white noise and perfect period-
icity, often showing interesting structure in their autocorrelation. Their
autocorrelation typically decays at longer times, indicating that the sound
pressure at a given time is uncorrelated with the sound pressure far enough
in the future.

The Fourier construction of the power spectrum reveals why a wide
time pulse gives a narrow power spectrum, and vice versa. Choosing a
cosine with a frequency shifted from the maximum of the power spectrum
peak by Af = fiax — f = d, we find (figure 4.11) that the product of
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Two different autocorrelation functions are cosine-transformed into power spectra.

A and B are an analysis of a (relatively) long-lived decaying autocorrelation at on-peak
and off-peak frequencies. C and D analyze at the same frequencies but for a
faster-decaying autocorrelation. Slow decay (broad in time) corresponds to a narrow
frequency spectrum (panels A and B), whereas a fast decay (narrow in time) is paired
with a broader power spectrum in frequency, in accordance with the uncertainty
principle. Note that the off-resonant frequencies shown (cases B and D) correspond to
reduced power, but the faster-decaying signal is reduced by less.

the cosine and the autocorrelation oscillates between positive and negative
values with period 1/d. This is quite apparent in panel B in figure 4.11. If
the autocorrelation is decaying with time, the question arises, how many
such beats are seen before the decay is significant? If the autocorrelation




Jasts several such beats (wide time signal), the negative and positive
contributions will nearly cancel when forming the average, meaning the
spectrum must be small at that frequency difference (narrow frequency
spectrum). If at the same frequency difference d, the autocorrelation
dies before the positive-negative cancellation can take place (narrow time
signal), say, after just the initial positive part, the averaging out will not
occur and the power spectrum will be larger (wider frequency spectrum).
More power survives at off-center frequencies—that is, the spectrum is
wider for a narrow or thin correlation flf‘{nction (see the annotations in
figure 4.11). Tt is clear from this that the shorter the duration of the
autocorrelation, the broader the resulting power spectrum.

The uncertainly principle states that the shorter the time signal, the
broader the power spectrum in frequency. If we call the time uncertainty At,
set by the autocorrelation duration, the frequency uncertainty A f obeys

AfAL~1,

thatis, Af ~ 1/At.

The uncertainty principle is one of the most important concepts in
signal analysis. It thrusts itself into many situations, insisting that the
shorter the time interval over which the sound is known or analyzed,
the less is known about its frequency content. The time interval might
be determined by the brevity of the recording or the window of time
over which a recording is analyzed, but it equally well could be lim-
ited by the sound itself. If a trumpet player slides through a note in
1/20th of a second, it doesn’t matter whether the sound file itself lasts
much longer, because that note’s frequency is actually not perfectly well-
defined. According to the uncertainty principle, there is an intrinsic 20 Hz
indeterminacy.

Autocorrelation and the Chorus Effect

No one mistakes a chorus for a soloist, and vice versa. Nor are 20 violins
ever mistaken for a single violin. Yet if all singers are somehow in exact
lockstep unison, with no vibrato or frequency drift, the sound some
distance away would be indistinguishable from that attainable by a single
voice.

Singers and violinists are never in perfect unison. Each has a slightly
different pitch, which is drifting or oscillating (vibrato) slightly. The wave-
form cannot be perfectly periodic, even though it averages, say, 220 Hz in
frequency. No law of physics dictates that we should hear a fused 220 Hz
tone with a definite pitch in this circumstance, but we do. We hear a
pleasant scintillation, but not individual singers, mistuned or not. This is
the chorus effect.
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(Left) Autocorrelations of 40 slightly
mistuned singers holding a 200 Hz note
and another 40 singing a fifth above at
300 Hz, each slightly and randomly
mistuned from the mean frequencies 200
and 300. (Right) Autocorrelations of one
singer holding a 200 Hz note and another
a fifth above, with no vibrato and perfect
intonation. The chorus effect is associated
with a decay of the autocorrelation
function, on a timescale AT reflecting the
range Af of frequencies present,

AFAT ~ 1.

If a soloist holds a 220 Hz note with no vibrato, the sound and the
autocorrelation is perfectly periodic. Not so for a chorus: a somewhat
random addition of sinusoids takes place, one for each partial of each
singer’s voice as crests and troughs from different singers drift in and out
of phase since they are not perfectly in tune. A given peak in the signal, the
sum of all singers, may not be at all predictive of where the peaks in the
signal lie a quarter-second later, implying that the autocorrelation decays
within that quarter-second (or perhaps much faster). The autocorrelation
decag1 on a timescale At broadens the power spectrum by Af, such that
Af At ~ 1, in accord with the uncertainty principle.

Software and hardware tools exist that mimic the chorus effect by
creating and combining many slightly pitch-shifted instruments from an
original single instrument sound. This can be done by hand, starting with a
single track of a solo voice or instrument, randomizing its pitch by a percent
or two (without changing the speed of playback—a nice trick made possible
in many sound processing packages; see section 17.10) and combining it
(mixing it) with the original. A convincing chorus effect emerges once
this is repeated 5 or 10 times with slightly different pitches applied each
time.

The decay of the autocorrelation is evident in just such a computer-
generated tone, constructed from the addition of 40 slightly mistuned
replicas of two voices separated by a perfect fifth interval (a ratio of 2:3
in frequency), each voice with four harmonic partials. The autocorrelation
for a pair of unwavering perfectly tuned voices is seen in the righthand part
of figure 4.12.

We usually take our cues for pitch from the first few prominent peaks in
the autocorrelation, as we shall discuss at length in chapter 23. The first
part of both autocorrelations, 80 singers and 2, is very similar—almost
identical, in fact. Thus if autocorrelation peaks are indeed the key to pitch
perception, the chorus and the duet must be judged to have the same
pitch.

We can use the Fourier cosine calculation to understand these conse-
quences, which shows that the power spectrum broadens when an autocor-
relation decays rapidly; this is illustrated earlier in figure 4.11.
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Noise and Autocorrelation

We live in a noisy world. Sometimes noise dominates the sound. Can
we extract the part that isn’t noise? Dealing with noise is another great
strength of using autocorrelation (and its partner, the power spectrum,
which contains the same information). We examine two important cases
that have implications for how our audityiry system extracts information
from noisy signals.

Suppose a sound is repeated with a short delay, of 0.05 to 0.001 s, corre-
sponding to audio frequencies; such repetitions are echoes that are too fast
to be heard separately. They do however “color” the sound, even imparting
a pitch in some circumstances, as we will discuss further in sections 21.2
and 23.17. This applies to random white noise as well, repeated with a delay
as follows: white noise is recorded or generated, and the signal is added to
itself with a time delay, say, 5 ms, making a modified file. Clearly, if a large
blip exists in the original file, the blip is now also found 5ms later in the
modified file. This gives a sharp peak }n the autocorrelation function at
5ms.

Suppose we add some noise to a “clean” signal. The result is a ragged
looking signal (figure 4.13). We may be able to hear the original clean signal
buried in the noise even if we cannot visually detect its presence. The noisy
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A pure noise signal and its autocorrelation
are shown at the bottom. A noisy signal
with a smooth periodic signal embedded
(added to the noisy signal) appears at the
top. The signal itself looks as ragged as the
one at the bottom, which is pure noise.
Computing the autocorrelation reveals the
hidden periodic signal (top right).



Time and frequency are the Fourier
transform pair that concern us in this
book. There are many other examples
of Fourier transform pairs: quantities
that are related by a Fourier trans-
form. Anything that behaves as a
wave has an uncertainty principle
connecting Fourier transform pairs.

A famous Fourier transform pair
involves quantum mechanics. Nature
left the framers of quantum theory no
choice: matter, mass, you and I,
everything is ultimately a wave. The
position of a particle (which is really a
wave) and its velocity (momentum)
are Fourier transform pairs, and are
therefore subject to an uncertainty

signal s’ is s'(¢t) = s(¢) + n(t), where n(t) is the noise. The autocorrelation
becomes

¢(r) = (s"(t)s'(t + 7))
= (s(B)s(t + 7)) + (s(t)n(t + 7))
+n)s(t + 7)) + (n(®)n(t + 7))
= (s()s(t + 1)) + (n(t)n(t + 7)). (4.10)

Theflast equality holds because there is no correlation between the signal
and the noise—we assume they are completely independent. Cross terms
such as (s(t)n(t + 7)) average to zero and we can eliminate them.

The noise is random and decorrelates with itself immediately, leaving
only the original signal. The autocorrelation is smooth in spite of the
noise. This assumes, however, that enough data exist to do long averages;
otherwise, the cross terms (n(t) s(t + 7)) and (s(t) n(t + t)) do not average
to zero.

This works so well that tiny signals can be rescued from a lot of noise, as
seen in figure 4.13. A pure noise signal and its autocorrelation are shown at
the bottom. A noisy signal with a smooth periodic signal embedded appears
at the top. The combined signal looks as ragged as the one at the bottom,
which is pure noise. However, computing the autocorrelation reveals the

hidden signal (top right).
/

principle. This has the shocking
consequence that the more certain we
are about the position of a particle,
the less we know about its velocity!
The reverse is true too: the more we
know about velocity, the less we
know about position. This is known
as the Heisenberg uncertainty
principle. It reads AxAv > k/2m,
where m is the mass of the particle,
Ax is the uncertainty in its position,
Av is the uncertainty in its velocity,
and # is known as Planck’s constant,
which is a known number. Another
example of a quantum uncertainty
principle involves time and energy.
In quantum mechanics, it takes a lot

of time to pin down the energy of the
system precisely. If we’ve followed a
system for only a short time, then we
are not very certain about its energy.
That uncertainty principle reads
AEAt > h/2. Thus time and energy
are Fourier transform pairs, as are
position and velocity. The Einstein
quantum relation E = (27 f) relates
the energy with frequency, most
often the frequency of light emitted
or absorbed in a quantum trans-
ition that changes the energy. Thus
the time-energy uncertainty prin-
ciple is really another time-
frequency uncertainty principle in
disguise.




