Spying on Conversations

A late twentieth century device for spying on conversations employs much
the same principles as Lissajous’s mirror on a tuning fork. For about
$45,000, you can own one yourself. Of course, it is illegal to use it except
if everyone inside knows you are recording their conversations. The role of
the mirror is played by a window pane in the room where the conversation
is taking place. Instead of a tuning fork causing the mirror to vibrate,
the window vibrates ever so slightly in response to the sound waves from
nearby conversations. An infrared (invisible) laser beam is directed at the
window from the outside, perhaps from an adjacent building. Detection
is by projection of the reflected beam onto a sensitive photodiode, which
modulates electric current according to the amount of infrared light it is
receiving. These modulations are picked up and transformed electronically
into audible sound. The device was reputedly a favorite trick played on
the U.S. Embassy in Moscow during the Cold War. It can be defeated by
taping a small vibrator to the window, overwhelming the signature of a
conversation with noise.

More modern versions can beam the laser to any object in a room, like a
picture in a frame. The reflected beam is analyzed by interferometry, which
nses a beam splitter to cause interference between the returning reflected
laser beam and part of the outgoing beam. Tiny shifts in the phase of the
returning beam, caused by vibrations of the object it reflected from, change
the interference and in turn induce measurable light fluctuations at the
photodiode, which again are amplified and turned back into sound.

Fourier Decomposition

In figure 3.11, the smaller fork is vibrating faster than the larger fork by
factor of exactly 3/2. Using fi = 200 and f, = 300, the displacement of
the smaller tines reads

y(t) = cos(2m - 200t) + cos(27 - 300¢),

where we have assumed equal amplitudes for both vibrations. This is the
function that is plotted in figure 3.11. Notice that it is perfectly periodic. Its
frequency is 100 Hz, lower than either the 200 Hz or the 300 Hz component.
The two waves return to their starting phase at the same time after three
periods of the 300 Hz wave and two periods of the 200 Hz wave; this time is
0.01 second, corresponding to a frequency of 100 Hz. Here is the first hint
of a crucial issue, one that extends to theories of music and hearing. If any
single pitch can be associated with this combination, it is certainly 100 Hz,




but there is no 100 Hz frequency present at all. One can also easily “hear
out,” as it is called, the 200 and 300 Hz “atomic” components as individual
sinusoidal pure tones embedded in the “molecular” whole. There is much
more evidence to present regarding pitch perception, and we leave this
subject for a full discussion in chapter 23.

By construction, the complex vibration represented in equation 3.10
comprises two known sinusoids. Suppose, however, that only the trace y(#)
of the net vibration had been presented, as a kind of puzzle, and you were
asked to find the frequencies and amplitudes that together make up the
signal y(t)—that is, to find the righthand side of equation 3.10 given only
the lefthand side. This kind of puzzle solving can be done systematically
and is called Fourier analysis, or Fourier decomposition; here the solution is
simply equation 3.10. We could make up more difficult puzzles by adding
together more sinusoids, but the solution would of course exist. All such
explicit sums of sinusoids have solutions, however unrecognizable they
might be to someone who had not seen their construction. The question
is, can any function be represented this way?

Joseph Fourier (figure 3.16) answered this question in the affirmative
around 1800. His motivation was heat flow, not sound or music, yet Fourier
more or less unwittingly revolutionized the field of acoustics. Without his
theorem, we would be at a loss to explain many disparate phenomena.
It required other nineteenth-century scientific leaders like Georg Ohm,
Hermann von Helmoltz, August Seebeck, and Rudolph Koenig to make
clear the importance of Fourier’s theorem, yet they divided into two
opposed camps when it came to its implications for the mechanism of
hearing. Partly because the biggest names took on the losing side of the
issue, much of this confusion persists today. This delicate and subtle subject
is approached in chapter 23.

Specifically, Fourier’s theorem states that any periodic function y(t) of
period T can be expanded:

y(t) = a;cosQ2m ft + ¢1) + azcos(2mw - 2 ft + ) + - - -
+ay cos2w - nft+¢y) + -,

where f = 1/T and the ¢’s are phases, which could be any numbers
between 0 and 27r. This sum is manifestly periodic, since advancing time by
an amount T = 1/f advances the phase of every term by multiples of 27.
However y(t) could also be periodic with a shorter period—for example,
if all the odd amplitudes a;, a3, and so on vanish, which would make it
periodic with period T'/2. The six sinusoids shown in color in figure 3.17
give the black wave when added together, approximating a sharp-cornered
“sawtooth” wave. More sines give better and better approximations.
Nonperiodic functions can also be expanded in terms of sinusoidal
functions. We have already mentioned that a function such as y(t) =
cos(27 ft) + cos(2m - +/2 ft) is not periodic, having an irrational /2 ratio

Portrait of Joseph Fourier (1768-1830), the
French mathematician who proved that any
function can be written as a sum of
sinusoidal waves.
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When added, the six sinusoidal terms in
the Fourier series for a sawtooth wave
when added together give the
approximation shown in black.

of its component frequencies. Clearly, if this y(t) were presented as a
puzzle, the answer is just the equation in the preceding sentence, so this
example hints at the fact that all nonperiodic functions also can also be
written as a Fourier series. As Sir James Jeans, a famous mathematical
physicist of the late nineteenth and first half of the twentieth century, and
himself an author of an excellent popular book, Science and Music, put it,
“Fourier’s theorem tells us that every curve, no matter what its nature may
be, or in what way it was originally obtained, can be exactly reproduced
by superposing a sufficient number of simple harmonic curves [sinusoidal
curves]—in brief, every curve can be built up by piling up waves.”

We do not attempt to prove this here, but a little experimentation with
the Fourier applet makes the theorem seem quite plausible. Any shape you
draw with the mouse appears instantly reproduced as the sum of sinusoidal
components. Fourier’s theorem plays an enormous role in the theory of
sound production, pitch perception, and indeed everything in this book.
Fourier decomposition into many sinusoids was a matter of much debate
in the past: is it purely a formal mathematical trick or something that real
objects do when they generate complex signals? We take up this question
again when we discuss vibrations of real objects and pitch perception.

The sinusoidal wave stands alone as the only shape that can be said to
comprise a single frequency. This is essentially a tautology, yet it was by
no means obvious to even very gifted natural philosophers working before
Fourier’s theorem became known. Any nonsinusoidal shape necessarily
requires more than one term in its Fourier series.

The sinusoid is the fundamental and indivisible unit, the atom, of signal

analysis and also of vibration, sound, and music. The sinusoids, each plain

and colorless, together can describe any tone or indeed any sound. We shall
see this principle in action many times in this book.

Power Spectra

The Fourier decomposition of a periodic signal (for example, a sound
trace) into sinusoidal waves can be summarized in an important diagram
called a power spectrum. Power is a measure of energy—in fact, the
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amount of energy per unit time. Across many kinds of waves (light, sound,
water, earthquakes), the energy in the wave increases as the square of the
amplitude of the wave:

energy oc amplitude?.

For water, the amplitude is the height of the wave; for earthquakes, it is the
pressure or the shear displacement, depending on the type of earthquake
wave; for light, it is the strength of the electric field contained in the wave.
The amplitude relevant to sound is the pressure variation §p above and
below the background air pressure p.

The power spectrum of a simple sine wave is a graph with the frequency
of the sine wave on the horizontal axis and the amplitude squared (power)
in the wave on the vertical axis. With just one frequency present, at 220 Hz,
the tuning fork power spectrum is very simple (figure. 3.18). Together two
different sinusoids—for example,

y(t) = agp sin(27w 220 1) + agqq sin(27 * 440 t)
= a; sin(2m* f1 t) + ap sin(27 * (2 f1) t), (3.12)

where fi = 220, and a; = a2, a2 = duyg give the power spectrum shown
in figure 3.19.
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Power spectrum (right) of the sine trace
(Ieft) for the tuning fork; only one frequency
at 220 Hz appears. Notice the black dots
separated in time by the period T,
illustrating y(t') =y(t' + T), where here,
T=1/220 second. The power in the wave is
proportional to the square of the amplitude.

Power spectrum corresponding to the
addition of two sinusoidal waves, one at
220 Hz (blue), and one at twice the
frequency, 440 (green), corresponding to
equation 3.12. The addition of the two
waveforms is shown in red. The corre-
sponding power spectrum is shown to the
right. Each component alone would have a
power spectrum corresponding to its own
color. The relative phase of the two
components affects the shape of the wave
resulting from adding them (see the two
cases on the left, for a relative phase of 0°
and 97°), but the power spectrum (right)
remains the same. That is, the power
spectrum is insensitive to the relative phase
of the partials. Notice the black dots
separated in time by the period T,
illustrating y(t') = y(t' + T), where, here,

T = 1/220 second.




Notice that the resulting wave y(t), shown in red, is not a simple
sinusoidal shape. We see explicitly that it is made up of two sine functions.
Accordingly, the power spectrum for the red curve has two peaks in it,
each with a height proportional to the square of the amplitude of its
corresponding component sine wave, plotted on the horizontal axis at the
frequency of the sine wave. The waveform resulting from the addition is
now a complex signal, or musically a complex tone. It has a frequency of
220 Hz (it repeats every T = 1/220 seconds, but not sooner), even though
440 Hz is present. The 440 Hz sinusoid repeats twice as often as a 220 Hz
sinusoid.

However, any periodic function of period T is also periodic at 2T, 3T,
and so on. That is, if a signal repeats itself every second, it is certainly
repeating itself every two seconds. A 440 Hz sinusoid is also periodic with
the same period as a 220 Hz sinusoid. Adding any two signals that are
periodic with the same period gives a result with that same period.

Periodic Functions

We need a rule or procedure for determining the period, if any, of a sum of
individual partials. Discovering how to do this depends on the observation
that advancing the phase in any sinusoid by an integer multiple of 277 is
of no consequence: it has the same value it started with and is at the same
point in its oscillation. The sum of many sinusoids, such as

f(t) = aysin 27 fit + ¢p1 + ap sin 27 fot + ¢y +azsin 2w fst + s + -+,

will be periodic with period T if every sinusoid in the series has its phase
advanced by an integer multiple of 27 when the time is advanced by T.
Thus, we need 27 ;T = 27Ky, 2n oT = 27Ky, ... where K;, K, ...
are integers. But then we have

f2

fi

—==Ki, ==K+,

f f
that is, every frequency f; is exactly divisible by the same frequency f =
1/T. We say that f is a common divisor of fi, fa,.... If we have picked
the largest possible common divisor of fi, f», and so on, we say that f is
the greatest common divisor, or GCD. We have arrived at the rule:

The addition of different periodic signals with frequencies
fi, f2, f3s ... is periodic with the frequency given by the GCD
f of all these frequencies, if it exists. If it does not exist, the resulting
signal is not periodic.




The power spectrum is constructed by plotting the squares of the
amplitudes a? at the corresponding frequencies f,. Fourier’s theorem states
that there is enough flexibility in the amplitudes and frequencies to describe

any function y().

Aperiodic Signals and Vibrations

In the real world, there is no such thing as a perfectly periodic signal. A
signal can last a long time, but ultimately it must have begun at some time,
and it will come to an end in the future. In between, it can be very close to
periodic. There can be other imperfections of perfect periodicity. Perhaps
the signal doesn’t quite repeat itself every period, but only comes close. We
shall usually regard such signals as being periodic. In practice, this will often
serve us quite well, with very little error in a practical sense. Other signals,
such as the sound you get from a single clap of your hands, are not even
close to being periodic. A telephone dial tone may be steady, but it is not
periodic; the frequencies used are incommensurate.

A function that repeats itself only after a one-minute period may
be periodic to a mathematician, but not to us in practice. Tones that
have a period within our hearing range, 20 to 20,000 Hz, we shall call
audioperiodic. ¢

When we introduced the double tuning fork, we mentioned that the
three possible frequencies could be in any relationship to each other,
although the specific case we treated was the case of two frequencies with
a simple integer ratio 3:2. We now return to the subject of what happens
when the vibrational periods have no special relationship to each other.

The first notable aspect is that the power spectrum has no trouble with
this. Given the principles of its construction, there is no reason why power
could not exist at many arbitrary frequencies, not just those equally spaced
and based on some fundamental frequency.

Suppose we have two frequencies, 77Hz and 109 Hz (figure 3.20).
Technically, both of these are different multiples of the same fundamental
frequency—namely, 1Hz. Other ways to say this are that the greatest
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Superposition of two sinusoidal waves, one
of 77 Hz frequency, and one of 109 Hz. The
red trace is the sum of the green and blue
traces. Notice that the result shows no sign
of periodicity over this time interval, but the
function is periodic, with period 1s, or 109
oscillations of the higher-frequency compo-
nent. The number 77/109 is rational. Substi-
tuting v/2 x 77+77=108.89%4... +77

for 109 + 77 gives a resultant that is almost
indistinguishable on the time interval
shown here, but is strictly aperiodic.



common divisor (GCD) of 77 and 109 is 1, or that the sum
s(t) = cos(2m 77 t) + cos(2w 109 t)

is indeed periodic, with period 1 second. On the other hand, the combina-
tion

s(t) = cos(2w 77 t) + cos(2w 108.894 ... t)
= cos(2m 77 t) + cos(27w N2 x771)

has no period at all or, in other words, the period is infinite. The two
frequencies are related by the irrational number +/2; the shape of this
combination of only two sinusoids never exactly repeats itselfl The GCD of
77 and /2 x 77 does not exist. Irrational combinations of frequencies are
not available in Fourier, but MAX Partials' will give any combination quite
accurately. The combination 77 Hz + 109 Hz is periodic, but not audio-
periodic. To the ear, it is indistinguishable from 77 Hz + 108.89444 . ... Hz,
which is not periodic at all. It is instructive to plot and listen to these sorts of
combinations of sinusoids whose frequencies are not in any simple relation.

1MAX is a musical programming language that can create platform-independent applets that
work with the freely downloadable MAX run-time software. Several applications were built by
Jean-Frangois Charles in MAX for this book.
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Autocorrelation is a powerful way to characterize time series data, such
as the sound pressure at a microphone or the displacement of a surface.
Autocorrelation is more directly related to the power spectrum than is
the signal from which it is derived. Autocorrelation is a concept usually
reserved for advanced treatises, but it is not difficult to grasp. The rewards
for mastering it are manifold:

o Autocorrelation provides a key summary of even very complex sounds.
Earlier, we called the sinusoid the atom of sound, and complex
sounds, comprising many sinusoids, we called the molecules of
sound. Molecules have collective or lumped properties such as mass
and electrical charge, which are useful, even critical, aggregate
effects. Autocorrelation for complex sounds plays an analogous role
as a critically useful aggregate piece of information about the whole.

o Autocorrelation leads directly to the power spectrum. Autocorrelation
is a function of time, power is a function of frequency; the two are
each other’s Fourier transform. This is the Wiener-Khinchin
theorem, which we motivate but do not prove here.

These two properties are highlighted in this chapter. In future chapters, we
shall reap an additional harvest from our understanding of autocorrelation.
We preview these benefits now, without any hard evidence as yet:

o A sudden impulse to a system supplies an autocorrelation, the impulse
response, from which we can derive the power when driving a system
sinusoidally. By striking or hammering, velocity can be suddenly
imparted to a small part of an object. The velocity of the stricken
point as time progresses is an autocorrelation function called the
impulse response, or IR. The power spectrum derived from Fourier
analysis of the IR is simply the power that a sinusoidal drive would
deliver to that point, as a function of the frequency of the drive. The
IR is often quite easy to predict or understand, since it involves an
initial impulse traveling away from the source, bouncing off

71




Nearly everybody has a sense of
autocorrelation when it comes to the
weather: the present temperature
tends to be similar 24 hours later, less
so 12 hours later; it tends to be similar
12 months later, less so 6 months
later; it tends to be hot (cold) the next
day if it was hot (cold) on a given day.
The temperature change overnight is
likely to be much less than the
temperature change from summer to
winter. If the autocorrelation of data
is really useful, the events that
“usually” happen ought to show up
cleanly.

In figure 4.1, we show data that the
author assembled from 5 years of
temperatures taken every hour at
Fairbanks, Alaska. Remember that
the autocorrelation is not the
temperature itself, but rather the
correlation of the temperature ata
given time with the temperature
shifted to some number of hours
later. Suppose the temperature data is
a long column of numbers, one entry
for each hour. We copy this column
and place it next to the first one. The
autocorrelation for a 6-hour shift is
obtained by displacing the whole
right column down by six entries,
multiplying every entry on the left
with its new righthand partner
straight across, entering the result in
a third column to the right of the first
two, and finally adding all the

boundaries and returning as an echo. This is a key point in

chapter 9.

o Autocorrelation plays a leading role in our hearing. Autocorrelation
of sound determines our sense of pitch, below a few thousand Hz.
This is most likely a result of high-level data processing in the

numbers in the third column
together, dividing by the number of
entries. This gives just one number,
the autocorrelation at 6 hours. What
is plotted is the autocorrelation as a
function of that time shift.

The following common trends are
all reflected in the autocorrelation
for 5 years of data, shown in
figure 4.1: (1) It typically takes
1 to 3 hours for the temperature
outdoors to change significantly.
(Thus the autocorrelation does not
change much faster than this.)

(2) D{ily temperature highs tend

to become lows 12 hours later, and
lows tend to become highs also in
12 hours, but those changes are less
than the temperature swings from
summer to winter. (The autocor-
relation therefore dips relatively at
12 hours, 36 hours, and so on.)

(3) 24, 48,72, ... hours after any
given time is the same time on a
different day, which tends'to have a
similar temperature (corresponding
to the daily peaks in the autocor-
relation). (4) Very warm or very cold
weather comes in “spells” lasting
typically a few days (corresponding
to the 1 to 2 week decay in the
autocorrelation seen in figure 4.1,
lower left). (4) Summer is warmer
than winter, so the envelope of the
autocorrelation dips after 6 months,
18 months, and so on, but rises again

at 1 year, 2 years, and so on. (5) Just
because July 1, 2009, is a hotter than a
normal day does not mean that July
1, 2010, will be (so that the peak in
the autocorrelation reached at 1 year
is not as high at it is at 0 days). The
tendency to be colder every midnight
still contributes to a peak in the
autocorrelation at 24 hours. Similarly,
cold winters tending to be cold again
12, 24, ... months later contributes to
the peak in the autocorrelation. The
temperature in winter and 12 months
later both lie at negative temperatures
relative to the average; thus their
product is positive.

Temperature data (top) and its
autocorrelation (bottom) taken every
hour of every day in Fairbanks, Alaska,
for the years 2004 to 2009. The diurnal
variation of the temperature can be seen
in the upper left in a 20-day temperature
record. On some days, expectations are




brain, rather than built-in properties of the receptor systems in the ear. The
sensation of pitch is the end result of our human autocorrelation algorithm.
Even for periodic sounds, this can have surprising consequences, but the most
important applications arise for nonperiodic sounds that still have a definite
pitch. This point is taken up in detail in chapter 23.

Hourly temperature and its autocorrelation, Fairbanks, Alaska
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violated—for example, if a cold front autocorrelation data, which when tends to be positively correlated
arrives in the morning. The seasonal plotted for three years (lower right) because it is again the same season, the
variation in temperature is seen in the shows 6-, 18-, 30-,... month correlation is not perfect, because, for
one-year temperature record in the anticorrelations (negative correlations) example, a hot noon on July 1, 2005,
upper right. The black line in the lower corresponding to opposite seasons,and  does not imply a hot noon on July 1,
left shows the computed hourly 12-, 24-, . .. month positive correlation 2006. Any given hour is always the same
autocorrelation, averaged over the corresponding to the same season of the  temperature as itself, so 0 days is always
entire five-year string of data; the red year. The green dashed line shows that, the strongest autocorrelation.
line gives the envelope of the hourly while the temperature 12 months later
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Obtaining Autocorrelation Functions

The autocorrelation c(z) of a signal s(¢) is an average, defined over the
history of the signal:

c(r) = (s(®)s(t + 1)). (4.1)

The quantity to be averaged is the product of the signal at two different
times: s (¢) multiplied with s (¢ 4 7). The angular brackets imply an average
of what’s inside them over a large range of times ¢, and since ¢ is averaged
over, it does not appear in ¢ (7).

Autocorrelation is a check for repetition or self-similarity. Does the
signal, which might look quite unruly, tend in fact to repeat patterns at
regular intervals? For example, if there is a large positive fluctuation in
s(t) at some time t, does there tend to be another a time 7 later? Or, is
it anticorrelated at time t: most often s(¢t + v) has the opposite sign as
does s(t). The product s(#)s(t + t) would be most often negative and
(s(t)s(t + 7)) would be negative for that value of the time delay 7. If s(¢)
and s(t + 1) are uncorrelated, so that s(¢)s(¢ + ) is as likely positive as
negative, the average and thus c(t) will be zero at time 7.

/

Autocorrelation and Power for a Sum of Sinusoids

In this section, we show how to master the autocorrelation when the signal
- is a sum of sinusoids. In the next section, we learn how to do this in another
way, suitable for signals that are not parsed into sinusoids.

Up to now, we havé mostly assumed that signals appear as a sum of
sinusoidal terms:

s(t) = ay cos(27 fit+é1)+az cos(27 fot-+¢2)+as cos(2x fat+pa)+ - - -
= Zan cos(27 fut + fn). (4.2)
- .
For example, figure 4.2 is the sum of 10 such cosines. How can we find its

autocorrelation? The key is what we call the cosine averaging theorem, or
CAT, which states:

(cos(27 fit + 81) cos(2m ot + 82)) =0, fi # fo
== —;'COS((Sz - 51), fl = f2- (4.4)
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The CAT theorem allows us to compare two cosines by multiplying them
together and averaging. If they have different frequencies, the result will be
zero. The product of two cosines of the same frequency (and phase) looks
like figure 4.3. If the frequencies differ, we get something like figure 4.4.
which averages to zero. /

If a signal is given by s(f) = a; cos(2m fit + 81) + a, cos(27rf2t
+ &) + ..., it is not difficult to show, using the CAT theorem, that the

average (s (t)s (t+1))—that is, the autocorrelation function for that signal is
given by

c(r) = —alcos(27rf1r)—|— azcos(ZJszr)—i—

Thus the autocorrelation is extremely easy to calculate if the signal is al-
ready parsed into a reasonable number of sinusoids. The rule is simple: the
autocorrelation is a sum of cosine functions cos(27 f;7) at the frequencies
fi of the partials, multiplied by half the squared amplitudes for each partial
and added together.
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A sum of 10 sinusoids with different
arbitrary frequencies and phases.

Pro'duct of two cosines of the same
frequency and phase.

Product of two cosines differing in
frequency.




Each term in the autocorrelation,
expressed as a sum of cosines,
corresponds to the height and frequency
of a corresponding line in the power
spectrum.
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We have just shown that the power spectrum corresponding to an
autocorrelation given in terms of explicit cosines can be easily constructed:
we simply read the amplitudes and frequencies of the cosines (figure 4.5).
Vertical lines of height proportional to a2 are drawn at frequencies fu
Reversing the process, the frequencies and heights of the bars can be
read from a power spectrum to yield the autocorrelation function. This
completes the processing of a signal:

/
signal — autocorrelation <> power spectrum. (4.6)

One can go back and forth between the autocorrelation and the power
spectrum, but one cannot get back unambiguously to the original signal
because of the loss of phase information: for example, the amplitudes
a, of the original signal are squared, so their sign is lost. The original
signal cannot be unambiguously constructed, but its power spectrum
is unaffected by the sign of the amplitudes a, or the phases ¢ of the
sinusoids.

Autocorrelation functions are always sums of cosines with positive
coefficients. They are maximal at time ¢ = 0, regaining their maximum
at one period, if the original signal is strictlly periodic. Most functions
are not autocorrelation functions—for example, the function b(t) =
2 cos(27r1007) — cos(2 1507) is not an autocorrelation.

Autocorrelation for Any Signal

Now we learn to deal with the more common situation of signals not easily
parsed into a sum of sinusoids.




