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The original sound analysis tool was the unaided human ear, and
perhaps the occasional observation of a “sympathetic resonance” of an
open string or tube in the presence of other sounds. However impressive,
human hearing has finite frequency and dynamic ranges and, as we
shall see, is easily fooled about the internal structure of sounds, musical
or otherwise.

The beginnings of quantitative sound analysis were humble. In the
second half of the nineteenth century, so-called Helmholtz resonators were
constructed to aid the human ear in pigking out individual components
of musical sound. We will discuss them extensively in chapter 13. The
situation has now completely changed. Given good microphones and a
laptop, it is fair to say that where human hearing is concerned, there is
little left to be desired in the way of sound analysis tools.

The pressure variation recorded at a point over a period of time (that
is, sound) is an example of a signal. Quantifying and understanding the
content of sound falls under the well-developed field of signal analysis.

There can be only one pressure at a given place and time. If a plot
is made of a signal f(¢) versus time, a vertical line placed at any time
must intersect the plot only once. As long as they obey this rule, sig-
nals can take any shape or form; the variety is infinite. One of the
jobs of signal analysis is to decompose, or parse, signals into under-
standable components. Those components will themselves be simpler
signals.

The question arises: Is there a “best” or uniquely fundamental type of
signal, more perfect somehow than any other? It may seem an absurd
abstraction or an idealization to ask whether there is a type of function
more fundamental than any other. The question may make mathematicians
very uneasy. There is, however, a physical answer to this question, because
of the way objects almost universally vibrate or oscillate, especially for low
amplitudes of oscillation. They vibrate sinusoidally, as one or a combina-
tion of sine functions, one for each frequency of vibration. In chapter 8,
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The red ball rotates counterclockwise at
uniform speed and casts a shadow on the
y axis, given by y =rsinf =rsin(2xft), and
a shadow on the x axis, given by
x=rcosf=rcos(2rft). The frequency fis
the number of full revolutions per second,
which could be any number, such as
2.257, 3, or 5000.
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on string vibrations, the sinusoid will rule; here we anticipate sinusoidal
supremacy and develop some implications.

The Atom of Sound

Without the sinusoid, it is impossible to fully understand sound and music.
This is by no means completely obvious, and it wasn’t fully appreciated un-
til the early to mid-1800s. The establishment of the primacy of the sinusoid
marks the beginning of the modern era of acoustics. More fundamental
than any other type of vibration, sinusoidal vibration is truly the atom of
sound from which all other vibrations and sounds are constructed.

Fortunately, a sinusoid is very simple and easily derived from a circle, as
shown in figure. 3.1. Suppose a ball is rotating counterclockwise around the
circle, at uniform speed. Its angle measured from the x axis, 6, is increasing
at a steady rate, 8(t) = 27 ft, where 2r f gives the rate of increase and
t is the time. Note that the angle 6 is measured in radians, and the full
circle (360 degrees) is 2 = 6.28319. .. radians. f is called the frequency.
Starting at t = 0, the increase 0 after one second (¢ = 1) is 27 f. A full
revolution is an angle of 27, so after one second the ball will have made
2w f - 1/(2m) = f revolutions—that is, the ball makes f revolutions per
second. Note that f can be any number. Because 360 degrees is physically
the same as 0 degrees, we usually agree to start over ofter one full revolution
and keep the angle between 0 and 360 degrees.

Since it is going around at constant speed, the motion of the ball starts
to repeat itself after exactly one revolution. The time it takes to go one
revolution is called the period T, and the motion we say is periodic with
period T. T is a solution to the equation 27 f T = 2m, ie, T = 1/f. The
period is simply the inverse of the frequency.
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It is appropriate to do a little dimensional analysis. Time is measured in
seconds (s), so frequency must be measured in inverse seconds, or s71, in
order for both sides of the equation T = 1/f to have the same dimensions,
which they must. When you think of frequency, you can mutter the words
“per second” or “cycles per second” to yourself. One Hz is one cycle per
second, and it has dimensions of s™.

The shadow, or projection, y of the ball on the y axis oscillates
up and down as the ball circulates. Now comes the important state-
ment: If the radius of the circle is ) the sine function is defined
geometrically as

sinf = y/r.
The cosine is similarly defined as
cosf = x/r.

Since x> + y?> = r? according to the Pythagorean theorem, we have
proven the “trig identity” sin” @ + cos? 6 = 1. If the angle 6 is increasing
steadily—that is, 0(t) = 2mft—then x is necessarily given by x(f) =
r cos@(t) = r cos(2x ft). This is the cosine function, and the oscillation
along x is called sinusoidal. The plot of sine looks the same as cosine,
except it is shifted by a phase 7 /2—that is, cos 8(t) = sin [0(¢) + 7/2] (see
figure 3.2).

Some important qualitative aspects of sinusoidal functions are as fol-
lows:

o Sin x and cosx are simply phase-shifted versions of each other:
sin(x + 7/2) = cos(x).

* Sin x and cos x top out at +1, and bottom out at —1.

* Sin x and cos x are perfectly periodic with period 27.

« A plot of the slope of sin x is simply cos x; the slope of cos x is simply
—sinx.

Sine and cosine are the same function
except for a phase displacement of 7/2.




If we position a red stylus at the y shadow
of the ball (the tip of the arrow, not the
ball itself), it traces a sine wave as the
chart paper moves and the ball rotates
uniformly.
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o The slope of sin x is 1 for very small x (because its slope is cos x); it
therefore resembles the function x itself, which also vanishes at x = 0
and has slope 1. In other words, sin x ~ x for small x.

Imagine a stylus with red ink whose tip (the red arrowhead in figure 3.3)
is at the y position of the ball (not at the ball itself). As the ball rotates
counterclockwise with uniform speed around the circle, we get the sinu-
soidal waveform plotted on the moving chart paper—that is, a plot of
y(t) = rsin(27 ft) versus t, where ¢ is marked out along the chart paper
according to how fast it is moving.

We will often employ sines and cosines in describing sound and vibra-
tion. A pure tone, a sinusoid, or sinusoidal vibration of frequency f can be
written as

y(t) = AcosQ2n ft + ¢),

whefe y(t) is the signal, (for example, pressure variation), ¢ is a phase that
displaces the cosine in time, and A is the amplitude.

Sinusoidal Vibration

Why is the sine wave as described earlier so fundamental to vibration and
sound? The first hint of a preeminent role for the sinusoid comes from
vibrations of physical objects. It is found that most objects resist displace-
ment from their resting position, or distortion from their resting shape, by
pushing back with a force proportional to the displacement or distortion.
When released, the object accelerates toward its former resting position, re-
sponding to the force according to F = ma. (The rule governing the motion
of the mass after it is let go is given by Newton’s law, F = ma, where F is the
force, m is the mass, and a is the acceleration, which is the rate of change of
the velocity (v) of the displacement.) As it returns to its old resting position,
however, the object finds itself moving fast and thus overshooting, causing
the object to deform in the opposite sense. The object now resists deforma-
tion with a force in the opposite direction, causing a deceleration (which
is just an acceleration in the opposite direction) in response. The motion
stops (if there is no friction) only when the object has come to an equal but
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opposite displacement. The continuing force again accelerates it toward its
resting position, and again it overshoots, and so on. A periodic oscillation is
set up. )

The usual textbook example of this is a mass m hanging from an ideal
spring (figure 3.4). If the displacement from rest position is y, an ideal
spring resists with a force f = —ky, where k is the force constant. Suppose
we “pluck” the mass by displacingitto a 9istance A from its resting position
and then letting it go at time ¢ = 0. The motion after that is given by

y(t) = Acos(2r ft),
where the frequency is given by the important formula

1 |k
f= 27V m’

Thus the motion of the mass is exactly sinusoidal, and a plot of y(¢) versus ¢
is a sinusoid. If we displace it more initially (make A bigger), it oscillates
with larger amplitude A but its period T = 1/f is the same. The sine
function is yielding its first hints of its preeminent role in vibration and
sound. The sinusoid applies to all systems for which restoring force is
proportional to displacement. This force rule applies to all sorts of random
objects when they are displaced just a little.

Just when the ball reaches its maximum or minimum excursion, the speed
is zero. Conversely, just as the ball passes through zero displacement—that
is, y = 0—it is moving the fastest. The velocity of the ball is the rate of

A mass m oscillating on a massless spring
draws a sine wave on the chart paper as it
moves by. This is called a harmonic
oscillator; an often-used synonym for
sinusoidal oscillation is harmonic oscillation.




The red sinusoidal trace of the ball is seen
along with a plot of the velocity (green)
and the construction of the velocity as the
slope v= Ay/At of the plot of position
versus time. The velocity v(t) is 90 degrees
out of phase with the displacement y(t).
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change of its position—in other words, the slope of the curve y(t):
Ay
) = —.
v(t) = <

The graphical construction of the velocity is shown in figure 3.5. The green
velocity curve is displaced by a quarter of a period, or 90 degrees, from the
red displacement curve. We say the velocity is “00 degrees out of phase”
with the displacement.

The tuning fork seems a rather humble device that does but one thing
well—vibrate at a definite frequency and make a pure but almost barren
tone at that frequency. The tuning fork has played a leading role in music
and sound ever since its invention in 1711 by John Shore, who, like his
father before him, was sergeant trumpeter to the court of King George I.
Shore was a friend of George Frederic Handel, who wrote parts specifically
for him, as did Henry Purcell. He was one of the few trumpeters who
could play Purcell’s notoriously difficult passages. He carried a tuning fork
around in his pocket.

The tuning fork seems like a simple invention, but there are not many
metal objects you can hold while they ring a pure tone for a minute, which
a good tuning fork will do. Most objects make only an indistinct pitch or
a tone with many frequencies in it, unsuitable for a frequency standard.
The tuning fork has the rare distinction of barely shaking a large part of
itself—the stem—as it vibrates in the mode easily excited by striking the
prongs (see figure 3.6). Thus there is little tendency for soft fingers or the
support to sap the vibrational energy of the prongs. If the fork is placed on a
resonator (more about resonators in chapter 13), the sound is amplified—
in fact, sent out by a completely different mechanism. The resonator box
receives tiny residual vibrations of the stem and turns them into sound




much more efficiently than the stem can; it also captures the near field,
as it is called, of the tuning fork and reradiates it. (See box 20.1 and nearby
sections.)

Most objects are very poor at converting vibrational energy sound. The

yibrations damp out mainly due to other sources of friction, not to sound
production. Inducing such objects to produce sound more efficiently barely
increases the overall damping; in other words, that part due to sound
production remains small compared to other sources of damping. This is
a seemingly modest observation but is actually a key to many phenomena
involving sound production.
' Other modes of vibration of the tuning fork exist, as with all macro-
scopic objects, having higher frequencies than the vibration described in
figure 3.6. But if these higher modes get excited when the fork is struck,
most tend to rapidly damp out, especially when the base is being held,
leaving only the lowest tone. Later (see section 15.7), we discuss the recently
discovered Belleplates, flat metal sheets with a special shape and a tab for
i holding, which also ring for many seconds.

Before the tuning fork was used as a frequency standard, pitch could vary
by as much as four semitones (two whole notes of the Western musical
scale) from one orchestra to the next, or even from one instrument to
the next. But even the tuning fork (and the pitchpipe) didn’t prevent the
I gradual creep upward of concert pitch in Europe, beginning around the
‘I seventeenth century. Vocalists tried to rein in this rise, citing strain on
|
|

their voices. Fundamental vibration mode of the prongs,
In spite of the popularity of the tuning fork as an instrument useful or tines, of a tuning fork. A tuning fork is

to orchestras and choruses, no one knew how they really worked. Ernst  typical of vibrating objects, in that the
Chladni, whom we will meet again in connection with vibrating metal ~“Mass”and “spring” are not separated. It has
plates (see sections 15.3 and 15.4) began the tuning fork’s transformation A e T E sxclllationaftie
: Sl - . tines at its design frequency. The tines push
into a scientific instrument 90 or so years after its invention. He found that | | - 1c o0 periodically, whichcauses
the tines vibrate in synchrony, both moving toward the middle and then  pressure waves to form and radiate away.
both moving out, pivoting from the U-shaped base, where there is very
little movement (see figure 3.6).
The tines of the tuning fork are responsible for both its mass and
its springiness. This is typical of most objects: the “massiness” and the
“springiness” are both distributed throughout the object. For small dis-
placements of the forks, the restoring force is proportional to the dis-
placement. Therefore, we expect the vibration of the fork to be sinusoidal
(figure 3.7), provided only one mode of oscillation is excited. One of the
advantages of the tuning fork design is that it is very easy to excite the
intended mode with both tines vibrating symmetrically by striking the fork
against an object. We shall learn much more about multiple vibrational
modes, their periods, and their combinations when studying the bead
system in the next chapter, but they are introduced in this chapter in
connection with the double tuning fork.

a




A tuning fork oscillating harmonically
draws a sine wave on the chart paper as it
moves by; it is vibrating at 220 Hz. This
oscillation, in which the tines move in
opposite directions, gives an audible pure
tone at 220 Hz.
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The tuning fork in its lowest, most easily excited mode of vibration
emits just one sinusoidal tone at a single frequency. This is a “pure” or
“simple” tone—the atom of sound. A sinusoid is perfectly periodic, with the
period given by the inverse of the frequency. Most sound sources generate
complex tones consisting of many simultaneous sinusoids, even if they are
periodic. It was by no means obvious in the nineteenth century that the
only correlate to a pure tone is the sinusoid. This is the essence of Ohm’s
law, which will be taken up in earnest in the chapters on pitch (chapter 23)
and timbre (chapter 24).

The barren sound of a sinusoidal pure tone is described in various ways:
plain, no color, clinical, and so on. Paul Falstad’s Fourier applet readily
generates single sinusoidal tones.

/

The Pendulum

| took two balls, one of lead and one of cork, the former more than a
hundred times heavier than the latter, and suspended them by means of
two equal fine threads, each four or five cubits long. Pulling each ball
aside from the perpendicular, | let them go at the same instant, and they,
falling along the circumferences of circles having these equal strings for
semi-diameters, passed beyond the perpendicular and returned along
the same path. This free vibration repeated a hundred times showed
clearly that the heavy body maintains so nearly the period of the light
body that neither in a hundred swings nor even in a thousand will the
former anticipate the latter by as much as a single moment, so perfectly
do they keep in step.

—@Galileo, Two New Sciences, 1638

The pendulum is the first and still perhaps the most important paradigm
for sinusoidal vibration. It is also the source of another synonym for
sinusoidal vibration: pendular vibration.

Galileo remarks that the period of the pendulum does not depend
on the mass of the bob nor the amplitude of its swing, unless it exceeds




90 degrees. In fact, the period of the pendulum is very nearly but not exactly
independent of the amplitude for small amplitudes, but by 90 degrees and
more it starts to increase significantly. For small amplitudes, the period T

is given by
£
T =2m \/j s
4

where £ is the length of the pendulum in meters, and g, the gravitational
constant, is on average over the earth’s surface g = 9.80665m/s?, but
the actual number varies by as much as half a percent from place to place
on earth. This is a fairly large variation—for example, a pendulum clock
would not keep good time without a correction in England if it kept good
time in Italy.

Try experimenting with a pendulum consisting of a thread and a set of
keys. You can check equation 3.5 since it involves only the length of your
thread and a known constant. If you want to be precise, you should try to
estimate the position of the center of gravity of your keys when calculating
the length ¢, and of course use meters to measure length. The mass of your
keys does not come into the formula, nor does the amplitude of the swing
if it is small; the latter is an approximation good for small amplitude (see
figure 3.8).

The motion of the pendulum is given by

- g
6(t) = 6y cos (/\/;t) ,

where 6 is the initial displacement of the pendulum at its maximum angle.
If we run our chart paper recorder, as shown in figure 3.9, the track of the
pendulum bob (for small amplitude) is very nearly sinusoidal.

We have already accumulated three systems that vibrate sinusoidally:
the mass and spring, the tuning fork, and the pendulum. A key point, not
yet obvious from what we have said so far, is that most objects can vibrate
in many ways, even thousands or millions of ways, and yet each of these
individual ways is itself a sinusoidal oscillation, in that any point on the
object is moving up and down, or side to side, and so on, sinusoidally.
Hardly a more important principle can be expressed in all of the subject of
acoustics, but we shall have plenty of opportunities to point it out again—
for example, in the next section. The system considered in chapter 8—
namely, a set of beads that are held on filament under tension—will help
to clarify this point.

The Double Tuning Fork

The sinusoid reigns supreme not because it describes the vibration of
masses and springs, tuning forks, and pendula, but rather because any

Simple pendulum of length £ and mass m.

P

A swinging pendulum bob traces out a
sinusoid on moving graph paper.




A double tuning fork. The smaller tuning
forks are carried back and forth as a whole
as the large tines oscillate. in addition,

the smaller tines oscillate at a higher fre-
quency without significantly affecting the
large tines.

sound (or indeed any signal) and any vibration can be decomposed into a
sum of different sinusoids. A single sinusoid oscillating at a fixed frequency
is the source of a pure tone. This is what makes the sinusoid the atom
of sound. Complex molecules, just like complex tones, can be broken
down into their constituent atoms. Complex tones (molecular sound so to
speak) such as that produced by a trumpet can be decomposed in terms of
simple sinusoidal tones (atomic sound). We have not yet established these
concepts, but the first hints are emerging.

We can ease into these concepts with the aid of a new kind of tuning
fork. Perhaps no one has ever constructed a double tuning fork of the type
shown in figure 3.10. But it could be done, and as a thought experiment it is
very instructive. It will lead us into the world of periodic and nonperiodic
functions that can be decomposed into sine waves.

Our double tuning fork has tines that are themselves tuning forks. To
understand how this would work, we can first ignore the smaller tuning
forks and suppose that the smaller tines of the secondary forks are not
moving relative to each other, making the smaller forks act as a solid mass.
This is actually a possible mode of vibration by which the complex tuning
forks could oscillate, and except for the strange shape of the forks not much
has changed from the original tuning forks we considered already. We hold
the main base steady and horizontal, labeling the vertical position of the
corner of one of the small forks by the coordinate y(¢). Then, in the mode
just/described, :

y(t) = ay cos(2m f1t),

where f; is the frequency of the vibration that oscillates the tines as a whole,
and a; is the initial displacement.

Since tuning forks don’t shake their base very much, another possible
mode of vibration is for the smaller forks to vibrate without setting into
motion the lower frequency mode in which the smaller forks are carried
back and forth as a whole. This motion also displaces the position of the
smaller tines and is described by the equation

y(t) = ap cos(2m fot),

where f, is the frequency of the vibration that oscillates the smaller tines
as if they were not attached to something larger, and a, is the initial
displacement in this mode.

It would be quite possible to have the double fork vibrate at three
different frequencies, by leaving the mass of the left-and righthand smaller
forks equal, but reshaping one of the smaller forks so that it vibrates at
a different frequency than the other small fork. Even though there are
in reality myriad other ways this complex object can vibrate, the three
modes in which the left small fork opens and closes (which we call mode
L), the right small fork opens and closes (which we call mode R), and
both small forks are shaken as a whole (which we call mode B), are by
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far the most important and easy to exc/ite if the fork is being held at its
base.

Last, there is no reason why all three modes could not be excited at once.
The lower frequency mode B, carrying the smaller forks back and forth as a
whole, is scarcely affected by whether the smaller forks are vibrating a little.
Similarly, the smaller tines barely register whether their base is swaying
back and forth more slowly, since the vibration of the tines is very weakly
coupled to the base. For two modes excited, the total displacement of one
of the smaller tines is now a sum of the overall displacement of the small
tuning fork, plus the displacement of the small tines relative to its base:

y(t) = ay cos(27 fit) + a, cos(27 frt). (3.9)

That is, the position of the smaller tines is first displaced by the lower
frequency mode and then figured from there by adding the displacement
of the smaller fork’s higher frequency mode, making y(¢) a sum of two
sinusoids of different frequencies (see figure 3.11).

What can result from this? One important question is whether the two
frequencies are commensurate. By that we mean, is some integer multiple
of one of the frequencies exactly equal to an integer multiple of another?
This question will be more meaningful, in music and in practice, if the
integers are small. In other words, we are not usually interested in whether
2057 f1 = 1317 f,, but we are interested if 2 f; = fror3fi =2f,.

Trace of the stylus of a double tuning fork

with two modes excited. In the case shown,
the smaller fork is vibrating faster than the
larger fork by a factor of 3/2. Notice that the
period of the sum of the two sinusoids,
cos(27 - 200t) +cos(2n - 300t), is double
that of cos(27 - 200t)—that is, 0.01 second.
This fact will play a large role later, when we
consider the perception of pitch.




Jules Antoine Lissajous. Courtesy David
Gerard.

If the frequencies of the two vibrations are commensurate—for example,
3fi = 2f,, or more generally mf; = nf, for small integers m and n—the
path y(¢) traced out by the fork will be periodic, with a period. This is made
clear in the following. If the two frequencies are commensurate but only
with large integers involved, such as m = 16 and n = 17, the trace will still
be periodic, but with a longer period. Last, the two frequencies could have
a ratio that is an irrational number such as the +/2—in that case, the trace
never exactly repeats any pattern.

It is important to note that by striking the double fork in the right
way, we can get either mode L or R vibrating independently and without
exciting mode B. Likewise, it is possible to get the lowest frequency mode B
activated without activating either of the smaller forks. In this way, each of
the frequencies may be heard as a pure tone, or they may be heard in any
combination. That combination could be musical or not, and pleasant or
not, depending on the frequencies to which the forks are tuned.

Microscopes for Vibration

It is possible to greatly amplify the small excursions of vibrating objects
by attaching a mirror to them and then shining a beam of light onto the
mirrér. Small differences in the angle of bounce during a vibration can be
magnified into big excursions on a wall some distance away. A deflection
of only 1/10 of a degree is enough to cause the spot of reflected light to
move about 1¢m on a wall 5m away from the mirror. In figure 3.13, a
narrow light beam (a laser beam would be ideal today) strikes first one and
then another mirror attached to its own tuning fork. The forks are slightly
mistuned, so that the mirrors at first vibrate in phase, then out of phase,
and so on. After bouncing off both mirrors, the light beam falls on a wall.
The direction of the beam is sensitive to slight angle changes of the mirror
as it rides back and forth on the tuning fork tines. If the second mirror
is deftly rotated, the projection on the screen traces out the beat pattern
shown in this figure. Jules Antoine Lissajous’s (figure 3.12) scheme uses
this principle and is a kind of microscope, magnifying the oscillation of the
vibrating prong.

Hermann von Helmholtz modified one of Lissajous’s designs—a micro-
scope altered so that the small objective lens placed just above the sample
is also vibrating, riding on the prong of a tuning fork (figure 3.14).
Helmholtz added an electromagnetic drive for the tuning fork, keeping
the prongs vibrating steadily with a controllable amplitude. Thus was born
the vibration microscope, the instrument Helmholtz used to demonstrate
the kink wave traveling around a bowed violin string (see section 18.1), a
fundamental discovery in musical acoustics. The optical axis (direction of
view) of the lens is perpendicular to the plane of vibration of the prong. The
lens is part of an otherwise standard compound microscope with the usual




Lissajous’s apparatus for visualizing beats.

eyepiece held fixed. If the prong is vibrating and a stationary small white
dot is viewed, it appears to oscillate, due to the oscillation of the objective
lens.

Suppose a small white dot is painted on another body vibrating at right
angles to the vibration of the fork and to the axis of the microscope.
Viewing this through the microscope, we will see the result of both the dot
vibration and the lens vibration. The lené, attached to the tine, executes a
simple harmonic oscillation of known frequency. Now a question arises:
what is the track taken by the small white dot when viewed through the
microscope? It is clear that if the period of the second vibration is the same
as that of the prong, the dot will trace a closed curve. If the second vibration
is also harmonic, this curve will be an ellipse. If the period is the same as
the prong but the second vibration is not harmonic, the curve traced will
be more complex. When analyzed, however, the curve obtained will yield
the secret of the motion of the second vibration. If the second vibration is
twice or half the period of the tine, it is still clear that a closed curve will
result, but the curve traced will not be as simple and will also depend on
the relative phase of the two vibrations. The same holds true if the ratio of
frequencies is any small integer ratio such as 3:4.

Ifthe ratio cannot be expressed so simply, the curve traced out appears to
be slowly rotating through different shapes it attains with various relative
phases of a nearby integer ratio. For example, if the ratio is 3.073317:4,
the curve will very nearly trace out all the possible phases of the exact
3:4 case. These considerations lead us down the path of number theory,
rational approximations to real numbers, and so on, which is a beautiful
but very deep subject. We shall have to break off here, with the exception of
presenting some of the Lissajous patterns seen for various types of motion
(figure 3.15).

Focus knob

\\ — Eyepiece

" \Electromagnet
__drive

Helmholtz's version of the vibration
microscope, this one made by Rudolph
Koenig, which Helmholtz used to discover
the kink wave traveling along a bowed
violin string.
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Array of Lissajous figures for two tuning
forks, one carrying the objective lens, the
other a white dot whose tracings are shown
here. The ratio of frequencies of the forks is
nm, n=1,...,6, m=1,...,6foragiven
relative phase of the two forks.




