surface will reflect high-frequency, short-wavelength sound diffusely.
These facts have not been lost on designers of acoustic spaces, especially
concert halls. The effect of the scale of the roughness compared to the
wavelength is illustrated in the Ripple simulation shown in figure 2.8.
A point source some distance from the surface sends long- and short-
wavelength sound toward a surface; much more “damage” is done by the
rough surface to the short-wavelength sound, which reveals clumps of
waves traveling in nonspecular directions.

Refraction

Wave energy often progresses in a well-defined direction, but that direction
can change more or less slowly. Such refraction often goes unnoticed for
sound waves, but refraction is actually quite ubiquitous outdoors over dis-
tances of about 100 m and beyond. Refraction results from the variation of
the speed of the wave within the medium in which it is traveling; the bend-
ing or curving of the wave is always toward regions of slower wave speed.

Several factors cause the wave speed to vary in air, all understandable
in terms of the concepts introduced in chapter 1: the drunken messenger
modelythe air cell impedance picture, or both.

Temperature. Lower temperature means the molecular messengers
are moving more sluggishly, reducing the speed with which pressure
fluctuations are propagated. Every gas atom or molecule has on average the
same energy as its neighbors, independent of its mass. Energy is defined as
E = 1/2mv?, where m is the mass of the molecule, and v is its velocity.
Energy per molecule in a gas is proportional to temperature, expressed in
kelvin, or K (room temperature is 295 K). Thus at 273 K, the freezing point
of water, the speed of sound in any gas should be ,/273/295 = 0.965 times
as fast as it is at room temperature, 295 K. At 295K, the speed of sound in
air is 343 m/s; thus we predict it to be 343 x 0.965 = 331 m/s at 273K or
0°C. This is indeed the measured value.

Composition. Differences in chemical composition change the messen-
gers themselves. At the same temperature, lighter messengers are speedier.
Again, the energy of any molecule due to its speed is the same as that
of any other molecule (this is called equipartition of energy), and since
E = 1/2mv?, the average speed must be higher if  is smaller. The speed
of sound in air, a mixture of nitrogen (about 80%) and oxygen (about
20%) with an average mass of 29 grams/mol is 343 m/s at 20°C (room
temperature). As discussed earlier, we would expect the sound speed in
helium gas, mass 4, to be about 4/29/4 = 2.7 times faster than air, or
343 x 2.7 = 929 m/s. The measured value is 972 m/s. Sulfur hexaflouride,
SF, should have a speed of 343 x 4/29./146 = 153 m/s; the measured value




is 150. In the atmosphere, water vapor content is the most common cause
of composition changes from one place to another.

Motion of medium. Last, if in some region the messengers are moving
en masse in the same direction, the wave propagates slower or faster (over
the ground) according to whether it is moving with or against the mass
movement. This will speed up or slow down the wave arrival merely by
a fraction, except if the speed variation differs from place to place, in
which case the variations also cause refraction of the waves. Temperature,
composition, and speed gradients are common factors affecting sound
outdoors; they will come up again in chapter 28.

A way to quickly (if qualitatively) follow wavefronts to see how sound
(or light) propagates was invented by Christian Huygens more than 300
years ago. This is a third way of understanding sound propagation, in addi-
tion to the drunken messengers model and the cellular method (chapter 1).

Huygens’s method works as follows: we start with a wavefront represent-
ing some wave incident on a “scene” that may include different materials.
We want to construct the wave farther along the direction of propagation.
Along the initial wavefront, we locate the centers of arcs of constant radius;
the “envelope” of the new arcs is the new wavefront, also of constant phase.
If the arcs are half a wavelength in radius, the new wavefront will be a
crest if the old one was a trough. To understand refraction, we slightly
modify Huygens’s original illustration. In figure 2.9, a wave is traveling in
the direction of the line segment D-A, with perpendicular wavefronts—
for example, A-C and the lines K-L. Suppose 7 is the time it takes for the
wavefront to travel the distance from C to the leftmost L. This distance
is the radius of the Huygens arcs used to propagate wavefronts in the
upper medium. (We have drawn a few of these in red.) Along the interface
between the two media, the wavefronts will advance between the adjacent
points labeled K in a given time 7. Inside the medium indicated by the
rectangle, the speed is lower, and we draw correspondingly smaller radius
arcs. The arc whose center is the rightmost point labeled K has such a
smaller radius and represents the progress of part of the wavefront from
that point in one unit of time 7. Huygens has drawn an arc of twice this
radius from the adjacent point K to its left, representing a time 27 since the
wavefront entered there, and three times the radius from the point to the
left of that. This is the correct procedure, as can be seen by the intermediate
wavefronts inside the medium (colored blue) given by the lines labeled
K-O. The new wavefronts are not parallel to the old wavefronts outside and
above the medium. We have thus constructed the new wavefront inside the
medium. Employing the rule that the energy flow is perpendicular to the
wavefronts, we see that there is a new direction A-N inside the medium
compared to the old direction D-A of propagation above the medium. We
have shown that the wave refracts as it enters the medium of slower wave
speed. Notice that the ray bends toward the medium with slower wave
speed—this is a useful rule to remember about refraction.

D

Christian Huygens's depiction of the
geometry of refraction (from Huygens's
Traité de la Lumiere, 1678), as determined by
his construction using arcs to advance a
wavefront, with the addition of the red arcs.




A plane wave having long wavelength
arrives from the top of the image and is
interrupted by a reflecting wall (left). The
geometric shadow is a vertical line
heading straight down from the end of
the wall. Waves penetrating beyond this
line into the shadow region are by
definition “diffracting.” More diffraction
occurs for longer-wavelength
(lower-frequency) sound; the diffracted

power is proportional to the wavelength.

This figure is taken from a Ripple
simulation; claims about the amount of
diffracted intensity can be checked by
setting up probes at appropriate
positions.

If you are sitting inside the lower medium, the wave crests arrive one
after the other with the same period as in the medium above. (If a person
above the surface of a pool is waving her arm once per second, the period
will be one second whether you are looking from above or below the
surface.) Because the wave is moving more slowly in the lower (blue)
medium, the wavelength must be shorter to keep the frequency f the same.
The ruleis f = c1/A1 = c2/As, where the C’s are the wave speeds and the
A’s are the wavelengths in the two media. It is then quite simple to show
geometrically, using the fact that the wavefronts must agree at the interface,
that

Ay sinf; = Ay sin6s, {2.3)

where the angles 6; and 6, are the angles of incidence and refraction
indicated in figure 2.9. This is Snell’s law, derived in many elementary
physics textbooks, usually in the context of light waves. There are many
practical implications for the refraction of sound that we will encounter
along the way in this book.

Diffraction

Diffraction is another way that waves, including sound, can take a non-
straight-line path. For projectiles launched from a distant point, a solid
object forms a “hard shadow,” a refuge from the projectiles. Waves do not
respect such hard shadows; they can bend around edges of obstructions,
making it possible to “hear around corners.” Diffraction is less pronounced
for short wavelengths, so if a marching band is approaching out of sight
behind a building, the low thumping of drums will be heard well before the
piccolos. This fact is reinforced by the simulations in figures 2.10 and 2.11.




Figure 2.10 shows diffraction around a wall segment for two different
wavelengths of sound. We see that long wavelengths diffract more easily,
or put another way, there is a closer approximation to a hard shadow for
very short wavelengths.

We may visualize diffraction due to an edge in terms of the cell picture of
sound propagation. If we examine figure 2.10 closely, it is apparent that
the end of the wall is very much like a point source of sound. A circular
wave emanates from that point, as is especially evident in the lower-right
quadrant, where nothing else is present. Faint evidence of this circular wave
can also be seen in the other three quadrants. See also figure 2.11.

The diffraction from the edge is understandable from the cell model as
follows: a cell just above the wall, but more than about half a wavelength
from the end point of the wall, won’t “feel” the end point, since it is too
far away to send and receive information (within one period) from the end
point at the speed of sound. The impedance of such a cell is therefore not
reduced because it does not sense the lower resistance to pressure changes
near the wall. More than half a wavelength beyond the end of the wall
also acts like any other cell in free space, again because it is too far away
to send and receive the information that the wall is present. There is one
special cell acting strangely, straddling the end of the wall. This cell is busy
scattering sound because its impedance is different than any adjacent cell.
It scatters whatever impinges on it. The scattered (diffracted) wave may be
understood as coming from this small region, which therefore acts like a

(Top) Successive snapshots of a sound pulse
arriving from above a wall segment.
(Bottom) Diffraction occurs from the end
points and is similar to a pulsed wave from
those points leaving as the initial pulse
arrives, as indicated by the red circles. The
analysis shows that the main portion of the
reflected wave obeys the rule angle of
incidence = angle of reflection. The “hard
shadow” region, shaded pink, would be free
of sound if sound traveled in straight lines,
without diffraction. Taken from screenshots
in a simulation run in Ripple.




small, or point source of sound. Like any source, there will be a falloff in
amplitude as distance increases from it; in this two-dimensional example,
we have the diffracted amplitude a,4(r) falling off as

aq(r) oc \/A/r,

and the intensity thus declining as o« A/r. The proportionality involves
only factors of 2 and 7. The power passing through the cell of length A
is proportional A—it’s a bigger cell at longer wavelength. The amplitude
squared of the diffracted wave is proportional to the power, so the factor of
/% in the numerator correctly accounts for the amplitude passing through
one cell. As the wavelength gets larger, the odd cell at the end, which is one
wavelength across, diffracts more power in proportion to its wavelength.

For a thin wall, the scale of the picture is set by the wavelength. The left
panel in figure 2.10 is about 10 wavelengths across in both directions.
If someone declares that the frame is physically 100 m across, then the
wavelength is about 10 m; from fA = c, the frequency is about 34 Hz. If the
frame is only 10 m across, the wavelength is about 1 m and the frequency
is 344 Hz. The picture is correct either way. By this principle, a mockup
only 1 meter high could be used to study the diffraction of sound around
a highway barrier that in reality is going to be 10 m high, provided all the
sound frequencies are increased correspondingly by a factor of 10. This is our
first encounter with the law of similarity, which allows us to scale up and
scale down studies of wave propagation, diffraction, and so on by scaling
the physical dimensions such as wavelength A by some factor such as 1/10,
and scaling the frequency by a factor of 10 so that f A = c both before and
after the scaling.

Similarity implies that sharp edge diffraction is always the same: you
need only one picture! It’s just a matter of scaling the picture up or down.
But then what is the justification for claiming that long wavelengths diffract
more than short ones?

We have already shown why the diffracted power increases in propor-
tion to the wavelength—that is, more is diffracted for lower frequencies—
the drum and piccolo effect. The similarity argument we are now making
reinforces this: measuring distances in a picture such as figure 2.10 in terms
of wavelengths, not meters, the amplitude a4(r) in equation 2.4 falls off
at the same rate. For example, suppose r is 10 wavelengths away—that
is, 7 = 10\. If the wavelength is 10m, r is 100 m from the wall; if the
wavelength is 1 m, r is only 10 m from the wall. This confirms that there
is more diffraction in the case of the longer wavelength, since it has the
same sound intensity in the shadow region 100 m from the edge as does the
shorter wavelength 10 times closer to the edge, at 10 m. This also confirms




with the notion that a region about one wavelength wide is responsible for
the diffraction. The longer the wavelength, the more energy is thrown into
diffraction, since power passing through an opening 10 m wide is 10 times
that passing through an opening 1 m wide. The law of similarity is taken up
in more detail in section 7.6.

Long highway sound barriers are now routinely placed between traffic
and residential areas, although they are quite expensive—about two mil-
lion dollars per mile. The walls are usually very solid, so most of the
sound arriving at the houses (if the wall blocks the line of sight with
the traffic) must have been diffracted. We now know this sound comes
from the top edge—that is, it is diffracted near the top of the wall.
The amplitude falloff will be a function of distance from the top of the
fence.

This makes possible an “active” sound attenuation strategy, namely, to
put an out-of-phase source right where the culprit “edge diffraction source”
lies. This can be accomplished by mounting microphones and loudspeakers
along the top of the sound barrier. Sound impinging on the edge is detected
by the microphone, processed by a computer chip and re-emitted out of
phase with the incident sound by loudspeakers aimed toward the quiet
side of the barrier. The speakers could be efficient horn loudspeakers (see
section 7.3) and solar powered. The speakers and microphones need to be
placed densely along the wall, but compared to two million dollars per mile,
it might prove cheap if the attenuation worked well enough.

A Ripple simulation of a similar situation is shown in figure 2.12. A space
between two vertical walls, with no roof, is filled with loud sound due to

Ripple simulation of active noise
cancellation from a noisy area (between the
walls), using destructive interference. The
red dot is the location of a point source out
of phase with the diffracted wave, which is
for the most part successfully canceled on
the left.




Huygens's wavefront construction of the
diffraction that results when a plane wave
collides with a wall. The wavefront
constructed from the wavelets (black
curves) becomes curved near the end of
the wall. Subsequent applications of
Huygens's rule leads to the propagation
shown and the development of the
curved diffraction wavefront. Using
Huygens's wavefront construction, it is
difficult to quantify the amplitude in the
diffractive region.

seven sources. An eighth source is placed at the top of one wall; its phase
and amplitude are such as to destructively interfere with and therefore
attenuate the diffraction reaching the ground, as seen on the left; compare
this with the diffraction reaching the ground on the right, for which no
cancellation was used. This scenario takes full advantage of the fact that the
diffraction from an abrupt edge is itself like a point source.

Diffraction may be understood qualitatively within the Huygens con-
struction. Suppose a wave is incident on a segment of a wall. This leaves a
shadow region that however is partly filled with diffracted waves—that is,
waves that have deviated from the linear path they were on before they hit
the wall (figures 2.11 and 2.13).

To develop an intuition for reflection and diffraction of sound from
various objects of different sizes and shapes, it is recommended that you set
up various Ripple scenarios, drawing obstacles, baffles, objects, and so on
and observe the reflection and diffraction of waves of various wavelengths
sent at them.

Schlieren Photography

Schlieren is the German word for optical inhomogeneities in transparent
material. Schlieren photography, which makes even slight inhomogeneities
visible, was invented by the German physicist August Toepler in 1864. He
succeeded in photographing shock waves in air created by supersonic (faster
than the speed of sound) objects. A sharp pressure pulse (shock wave)
wave can be created by an electrical spark; we hear this wave as a sudden
“snap.”

If light propagates through regions of rapidly changing air density,
there is a slight deflection toward the denser regions, normally too small
to be noticed. In the correct circumstances, especially when the light
has to travel large distances to the camera or the eye, small deflections
can build up a large effect. Almost everyone has seen “heat waves,” the
wiggly distortion of objects caused when light passes through heated
and disturbed air. Warmer air is less dense and has a lower refractive
index than cool air. Cinematographers have a favorite trick for showing
something a long way off on a hot day, capturing the wavy distortions
caused by refractive index differences of pockets of warmer and cooler
air. Light traveling through the turbulent, variable-index medium has a
characteristic scintillating and mottled appearance, owing to the schlieren
effect. The effect is quite noticeable near very hot objects—for example,
near a stove or a candle, where the air density is dramatically reduced due to
heating.

Toepler had the idea that a point source of light might be refracted
enough by such disturbances to cast lighter and darker bands on a screen




Source
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some distance away. This works very well indeed, and when the disturbance
is localized it can give a very accurate image of it. The principle is illustrated
in figure 2.14. Figure 2.15 demonstrates schlieren imaging of a shock wave
traveling through tubes of different shapes.

Ray Tracing

Ray tracing has been around a long time as a substitute for having to
solve for the exact wave motion. For example, in describing his speaking
trumpet, Sir Samuel Morland used as evidence for the efficacy of ray tracing
a pewter parabolic mirror that had not only set a board on fire upon
focusing the sun’s rays on it, but had also focused a distant man’s voice
to the same spot (presumably as the shadow of the speaker’s head fell
across the mirror). Light or sound, ray tracing the waves comes to the same
conclusion: they focus at the same spot. A wonderful bit of science for its
time.

Optical devices are designed by ray tracing because following the wave
motion is far too expensive. A simple rule is used: Rays travel in straight
lines unless interrupted by walls or lenses, following the course of the

Principle of schlieren photography. Slight
variations in the index of refraction of air,
caused by a propagating circular shock
wave (brown), refract light rays. The speed
of light is slightly slower in denser air,
causing light to bend toward denser
regions. Those rays that graze the
higher-density disturbance are refracted
toward them, deflecting them slightly. This
slight deflection is enough to have an effect
on the rays cast on a distant screen, causing
light and dark bands: light where the extra
rays arrived at the screen; dark where they
are missing. The rays that graze the shock
wave tangential to it are deflected most
because they spend the most time near the
gradients in the density of air.

In an image created by Arthur Foley and
published in Physical Review in 1922, sonic
(traveling at the speed of sound) shock
waves caused by a spark are reflected and
guided by three different-shaped tubes.
One tube is straight, one is curved, and one
decreases in diameter away from the spark.
The inner disk hides the spark; the ring
surrounding the disk supports the three
tube-shaped enclosures and does not lie in
the same plane as the spark and does not
disrupt the shock waves. The black part of
the image is a projection of a
three-dimensional object onto a plane

(see inset). From Arthur Foley, “A
Photographic Study of Sound Pulses
between Curved Walls and Sound
Amplification by Horns,” Physical Review 20
(1922), 505-512. (©) 1922 The American
Physical Society.




Simulation in Ripple of a plane wave
incident from the left onto a truncated
circular lens. On the right, a ray tracing
analysis is shown, using only the rays that
have not reflected from interfaces.

A right-angle corner showing two ray
paths that bounce once from each wall,
returning in a direction exactly opposite
to their incident direction. Any ray that
bounces from both walls will return
exactly parallel to its source.
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energy emitted from the source. More precisely, the rays travel perpendic-
ular to the wavefronts, for which they are the surrogates.

At interfaces like that between air and glass, the impedance mismatch
tells us that part of the wave is reflected and part is transmitted. This is not
a problem for ray tracing: the wavefronts (and with them the rays) split into
a transmitted part and a reflected part at interfaces such as air and glass.
The part of the wave that penetrates the glass changes direction unless
it is incident perpendicular to the interface (refraction). The reflections
obey the rule that angle of incidence equals angle of reflection, and the
refrattion of rays follows Snell’s law (equation 2.3). The ray tracing can get
quite complicated after several successive encounters with curved surfaces,
but it is still much simpler than following the waves themselves.

Ray tracing is only an approximation. It misses diffraction altogether
and is accurate and practicable only when the changes in the impedance
(and thus the wave speed) in the medium are either very abrupt, in which
case there is ray splitting involving reflection and refraction at the interface,
or quite slow on the scale of a wavelength, in which case the wavefronts and
associated rays curve gracefully.

Figure 2.16 displays a simulation in Ripple of a plane wave incident from
the left onto a truncated circular lens. On the right, a ray tracing is analysis
is shown, using only the rays that do not reflect from interfaces. The full
wave simulation shows the effects of interference of the various reflected
portions of the waves and the direct waves, as well as diffraction effects.

A 90-degree interior corner—three perpendicular walls that meet at right
angles—has the interesting and useful property that sound incident on
it gets reflected back along the direction it came from, over a wide range
of incident angles. This is exactly true in ray tracing analysis, as shown
in figure 2.17 for the two-dimensional case. For the three-dimensional




case—that is, the interior corner of a cube—rays can bounce three times,
depending on their initial direction, and in every case they return parallel  Part of a sound pulse from an
to their incoming path. The sender of a laser pulse will receive a pulse omnidirectional source (red dot) encounters

in return. One of the principles of stealth aircraft design is to absolutely 2 ™€ reflector, which sends some of the
pulse back toward its source. In addition,

avoid right-angle metallic corners that could make the aircraft light up e ek el epsEs endrrdsE
enemy radar screens. On the other hand, small corner radar reflectors | iqqie frame are the result of diffraction
are used for boats to make them easily visible on other ship radars. For  from the tips of the walls (see the discussion
wavelengths smaller than the dimensions of the reflector, reliable echoes for figure 2.19), while the two rather strong
(retroreflections) will be obtained from a corner reflector. A simulation ~Side pulses are generated when part of the
using wave propagation is shown in figuye 2.18. The principle has seen wide wave bounces affoneraall bubmissesthe
. G . ; opposite wall. The part that hits both walls

use, primarily in optics. There are working retroreflectors on the moon, ' q. tedback parallel to the direction In
placed there in 1969 by the Apollo 11 astronauts. Illuminated with laser \yhich it arrived.
pulses from the earth, the reflected signal is so strong that the distance to
the surface of the moon can be determined very precisely by timing the
return pulses.

Sometimes the exterior of buildings will have balconies or other struc-
tures that (accidentally) form excellent retroreflectors. The late Professor
Frank Crawford of the Physics Department at Berkeley noticed this on the
exterior balconies of Latimer Hall on the Berkeley campus. The balconies
returned an excellent echo to the sender from a range of different direc-
tions.

We conclude our discussion of waves propagating and interacting
with different objects with two complex yet informative examples. In
figure 2.19, we use a scenario run in Ripple to illustrate reflection, refrac-
tion, diffraction, and interference, all plainly visible after the wavefronts
collide with a block of material with a slower sound speed (which could
represent a colder mass of air, or perhaps a heavier gas such as sulfur
hexaflouride).

Figure 2.20 shows three different versions (ray tracing, numerical sim-
ulation, and hand drawing of an experiment involving liquid mercury) of
the result of an off-center source of waves confined to a circular pool.




A plane wave pulse incident from the
upper left travels toward the lower right,
in accord with the rule that the energy
progresses in a direction perpendicular to
the wavefronts. Some ray paths are traced
out at the bottom. Reflection, refraction,
diffraction, and interference are all plainly
visible after the wavefronts collide with a
block of material with a slower sound

speed. Note the delay in the progress of
the wave through the block of material.
Also, the wavelength is shorter inside the
block. The period must be the same inside
the block as it is outside. (Whether you are
inside or outside the block, a pulse sent at
1 Hz would have to be received at 1 Hz.)
Since the period is the same but the speed
is slower, A = ¢/fimplies & shorter
wavelength, as seen here.
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Ray tracing in Mathematica

T

Three completely different approaches to the same phenomenon:
an off-center point source of waves in a circular enclosure. The left
image is a ray tracing, obtained by following rays from the off-
center source point outward until they hit the circular walls, and
then taking specular bounces. The middle image shows the Ripple
simulation with a sinusoidal source. The right-hand image is the
most remarkable, obtained in painstaking detail by watching the
wave pattern from liquid mercury dropped periodically at the

Mercury drops in dish of mercury
Weber brothers, Wellenlehre, 1825

off-center source point in a circular dish of liquid mercury. The
original drawing, published in 1826 in Wellenlehre, by Ernst Hein-
rich Weber and Wilhelm Eduard Weber, consists of about 200,000
individual handmade dots stylistically representing the antinodes
as shaded-relief diamonds. Here, we clearly see the relation be-
tween two types of modeling (solving numerical equations simu-
lating the waves as in Ripple, and following rays from the source)
and the “real thing,"” as drawn in 1825 from an experiment.



In the ocean, the speed of sound
increases about 4 m/s for every 1°C
increase in temperature. Variable
temperature in the ocean therefore
results in variable sound speed, which
has the dual effect of refracting waves
and making them arrive sooner or
later according to the temperatures
through which they have passed. In
the 1970s, Walter Munk and Carl
Wunsch suggested the idea of ocean
acoustic tomography: measuring the
temperature of the ocean remotely
over large areas and at great depths
if desired by sending sound long
distances underwater to receiving
hydrophones. Sounds are created
hundreds of kilometers away from
receiving stations, and ray tracing is
used to help deduce the temperature
profile of the water between the
source and the receiver. Depending
on the temperature profile, there may
be many ways rays can travel from
the sound source to the receiver, and
generally each path will arrive at a
different time and will have passed
through different parts of the ocean.
This technique is an important part
of global earth monitoring of climate
change.

Going deeper into the ocean,
temperature steadily declines, but
the pressure is rising. High pressure
increases water density and causes an
increase in sound speed. At first, the
temperature decline wins, and sound
speed decreases with depth. Even-
tually, at a depth of about 800 meters,
the rising pressure overcomes the
decline in temperature and causes the
sound speed to go up again (see
figure 2.21). Thus, as discovered in

the United States toward the end of G 7
World War II and independently in
1946 in Russia (and kept top secret ‘
during the Cold War by both the \
American and Russian navies), there \
is a band of minimum sound speed,
called the Sound Fixing and Rang-
ing (SOFAR) channel, just under

1 km deep. Since waves always v
refract toward regions of lower
speed, the SOFAR channel is a
waveguide for sound. Comm-
unication over long distances is
possible, since the sound energy is -55
held to the channel rather than
spreading in three dimensions.
Figure 2.22 shows the results of two
simple experiments in Ripple, with
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Speed of sound versus depth in the
ocean. Courtesy Bdushaw.
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Simulations of sound-wave guiding in and near the SOFAR channel, conducted in the
Ripple Java applet. (Left) Waves are launched from the left, above the middle of the
channel (the channel is indicated as a blue hue; the sound speed reaches a minimum
in the middle of this region), and pass through the channel. Some of the waves are
refracted back and are trapped, oscillating from side to side as they progress down
the channel. (Right) Some fraction of the waves launched inside the channel with
low-enough angle are captured by the slow-speed channel. Once captured, the
waves lose much less amplitude with distance traveled than they would outside the
channel. Two representative trapped ray paths are shown in red; an escaping ray is
shown in blue. Whales are thought to dive down nearly a kilometer in order to
communicate using this sound conduit of the deep, which allows communication
perhaps for thousands of kilometers.




(continued)

the setting Temperature Gradient 4,
which has a band of minimum sound
speed, just like the SOFAR channel.
When ships lowered speakers and
hydrophones (microphones designed

to work well underwater) to use the advantage of the waveguide effects.
channel, they found they were not These whales may communicate with
alone: strange sounds are heard, other humpbacks hundreds or per-
believed to be coming from hump- haps thousands of kilometers away.

back whales diving down to take

Measures of Sound Power

We have already had a few occasions to discuss sound power. We men-
tioned the enormous difference between the softest audible sound and
sound at the threshold of pain. We have examined the falloff in sound
intensity with distance coming from a small source. Whenever a quantity
can vary by factors of millions or billions and yet be of significance over
its whole range, we need to bring logarithms to the rescue. The logarithm
measures the exponent that gives the number. The base of the logarithm
is the number we are raising to a power, and the power is the loga-
rithm of the number. Thus, by definition 7.3485 = 10%°810(7-3485) (We write
the base as a subscript on the log.) By trial and error if need be (but of
course we now have computers and before that, log tables), you can show
that 7.3485 = 10%%51%, or log, ,(7.3485) = 0.866199.

Instead of talking about sound intensity, we use the log, which we
also call intensity—that is, sound intensity measured in decibels (dB). The

formula is simple: I
I(dB) = 10log,, (—),
Iy

where log,(...) is the base 10 logarithm, and I, is a reference intensity,
usually defined to be the threshold of human hearing. Thus, a 0 dB sound
(the logarithm of 1 is 0) is barely audible to those with excellent hearing
in a perfectly quiet environment. Since 10log;,(2) ~ 3, a doubling of
sound intensity (for example, two identical instruments instead of one)
corresponds to a 3 dB increase. This definition makes clear that a 10 dB
increase in sound intensity (measured in dB) corresponds to a ten-fold
increase in power. The buzz of a nearby mosquito is about 40 dB, and a
normal conversation is about 60 dB. There is 100 times more power in a
normal conversational voice than in a mosquito buzz. Still, the mosquito is
surprisingly loud, considering a human weighs 10 million times as much as
a mosquito.

Other quantities are routinely given as their logarithms. The Richter
scale for earthquakes comes to mind; it measures the base 10 log of the
amplitude of motion of the earth. '




Another reason for the decibel measure is that our hearing is essentially
logarithmically sensitive. Our impression of loudness is not proportional
to sound power, but rather approximately proportional to the logarithm of
sound power. Table 2.1 gives some typical sounds and their corresponding
power in decibels. Sustained exposure to 85 dB sound is considered
harmful to hearing; needless to say, a rock concert at 110 dB is almost
unquestionably going to do permanent damage.

In section 2.2, we discussed the falloff of sound power with distance from
the source. We showed that the power passing through a window drops as
1/r?, where r is the distance from the source. There we also introduced the
falloff in the subjective loudness, which is less rapid. If the distance doubles,
from r — 2r, the objective sound power I drops from I = A/r? to A/4r?,
where A is characteristic of the source. In terms of decibels, we have

I;p(r) — Izg(2r) = 10log,, {%)—)} = 10log,, <%> = 6.02,
that is, there isa 6 dB drop in sound intensity measured in decibels for every
doubling of distance. This does not account for the effect of the ground,
wind gradients, and the like.

Unless they are somehow maintaining a lockstep phase relation, the total
intensity of two sources is simply the sum of the individual intensities. For
two equally loud trumpets, intensity is 2I as compared to I for one trum-
pet, thus a 3 dB increase is seen when dot/lbling the number of instruments.

Some Sounds and Their Decibel Equivalents

0 0.00002 Threshold of human hearing
10 0.0000632 Human breathing at 3m
20 0.0002 Rustling of leaves
40 0.002 Residential area at night
50 0.00632 Quiet home with some appliances on
70 0.0632 Busy traffic
80 0.2 Vacuum cleaner
20 0.632 Loud factory
100 2 Pneumatic hammerat2m
110 6.32 Accelerating motorcycle at 5m
120 20 Rock concert
130 63.2 Threshold of pain
150 632 Jetengine at 30 m (hearing severely damaged)

180 20,000 Rocket engine at 30 m (near-instant death)




Ten trumpets are 10 dB louder than one trumpet, a tenfold increase in
power. Because of our logarithmic hearing, ten trumpets subjectively sound
only about twice as loud as one.

We are not equally sensitive to sound power at all frequencies—we will
delay that discussion until chapter 22.

We can now return to the example at the start of this chapter. Is it
reasonable that the sound of a bell can travel 100 miles and be heard
aboard a ship? One hundred miles is about 160,000 meters, so the drop in
decibels from, say 100 m distance from the town square to 160,000 meters
is 10 log[(100/160, 000)*] 2 64 dB. Suppose we say the bell 100 m away
was a loud 95 dB. This becomes only about 30 dB at the ship, certainly
masked by the probable 50 to 70 dB ambient noise aboard a ship. If we
assume the sails can reflect 30% of the sound energy incident on them,
and that they concentrate the sound by a factor of 1000 by focusing (see
figure 2.7), we have amplification by a factor of 300 at the focal spot on
deck. This 10 log[300] = 25 dB, so that the sound at the focal spot would
be 30 - 25 = 55 dB; still very soft and probably inaudible except on a very
quiet ship, quieter than most houses today.

However, we have been assuming uniform spreading of the sound
according to the 1/r% law. On most days, this is not at all the case for
outdoor sound propagation over long distances. One reason is gradients
in wind velocity, as we shall spell out in more detail in section 28.2. The
wind is slowest at ground or sea level, being diminished by friction with the
ground, and faster aloft. Sound traveling downwind, therefore, is slowest
in its progress at ground level, and faster aloft, since it travels at 344 m/s
through air. Sound or indeed any of the usual kinds of waves (light, water
waves, and so on) refract toward regions of slower propagation. Therefore,
if the wind was somewhat offshore, the downwind portion of the sound,
traveling toward the ship, would have been spreading out not in three
dimensions, but rather in two dimensions, being prevented from going
aloft by refraction. There is only a 34 dB drop for a 1 /r falloff of sound
intensity, as opposed to the 64 dB for 1/r2.

In fact, the pattern of sound propagation and intensity downwind is not
uniform for another reason, as has been chronicled many times in war
and after accidental explosions. This subject is taken up in section 28.2.
On a scale of 150 km or more from the source, sound propagation can
be controlled by ever-present temperature gradients in the atmosphere,
causing a refocusing of the sound that escaped aloft down to the ground
about 150 km to 200 km from the source, making this sound many decibels
louder than it would have been without the long-range refraction.

2Here, we are on the shakiest ground. Clearly, it is impossible for us to know precisely what the
sail was doing that day. It is unlikely that it was a perfect shape for concentrating the sound. But
decibels are a logarithmic measure, and significant errors of estimation end up as modest changes
to the outcome.




Even without these atmospheric focusing effects, the bells might have
been just barely audible at the focal point of the sail aboard a very quiet
ship. Given more favorable atmospheric conditions, and favorable position
and shape of the sail, there seems to be absolutely no doubt that the ringing
of the church bells could have been heard 100 miles away.

How Big?

It can be useful to calculate how big things are. It is easy to be wrong by many
orders of magnitude when guessing how far a surface has to move in making a
sound wave, or how much energy is in the sound wave, and so on. Grammy
Award-winner Eberhard Sengpiel, sound engineer par excellence and lecturer
at the Berlin University of the Arts, has compiled a very useful table (table 2.2)
that makes it simple to calculate relevant acoustical quantities. Some of the
quantities in this table we have not discussed specifically in this book, but we
give them here nonetheless for reference.

Please note: The intensity I in the tables is not in dB, but bears the relation

1
I (dB) = 10 log,, (—) :
Iy
where
/
Iy = 1072 w/m?.

As an example of the use of the table, suppose we want to discover how far a
wall has to move (its displacement amplitude &) to create a very loud, 100 dB
sound wave of frequency 1000 Hz. First, we find I from equation 2.6 by
inserting 100 dB: 100 = 10 log,, [:5]; or I = 1072, Then, from the table, we
have

101 I i
f=—¢/l==———t/— ~8x107"m,
o\ Z~ 20007 | 420

just under 1 micron. The acceleration a is
a = 0’ = (20007)% x 8 x 1077 ~ 31m/s?,

or more than three times the acceleration due to gravity.

For a 100 Hz, 100 dB tone, the displacement is 10 times larger and the
acceleration is one-tenth as large as for a 1000 Hz, 100 dB tone. If I is 40 dB at
1000 Hz, a soft sound but still well above the threshold for hearing in a home
environment, I = 1078 W/m?, a million times smaller than for 100 dB. The
displacement & is proportional to square root of the intensity, so & is 1000
times less at 40 dB than at 100 dB or at 1000 Hz & ~ 10~m—just one
nanometer, or the width of a few atoms!




