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PHYC 480/581   EARTH DEFORMATION 
HOMEWORK 3      DUE FRIDAY, DECEMBER 5TH 
 
 

1. Incompressible fluid flow on an inclined plane.  Problem 6-4 in T&S. 
 

2. In many laboratory experiments, we see that crustal minerals (dominated by 
quartz and feldspar) undergo ductile flow at lower-crustal temperatures and 
pressures.  This observation raises the possibility that deformation in the lower 
crust may be treated as a simple Newtonian viscous flow in a 1D channel.   
 
(a) Using the N-S topographic profile below from the western Himalaya, estimate 

the pressure as a function of position due to the weight of the mountains. (You 
can digitize or make an approximated profile in Matlab and calculate the 
pressure along the profile. 

 
(b) The weight of the mountains provides a pressure gradient that acts within a 

lower crustal channel (channel thickness h=10 km) occupied by a Newtonian 
fluid.  
 
 
50 mm/yr 
 
  
On the south side (left) assume that material flows in from the south at a 
uniform rate of 50 mm/yr (approximate convergence rate between India and 
Tibet).  Using the relation between velocity and pressure-gradient in a 1D 
channel (eqn 6-10 in the book): 

h=10 km 
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solve for the predicted flow within the channel due to the weight of the 
mountains if the lower crustal viscosity is 1019 Pa s.  For this, you can assume 
that the topography far away from the Tibetan plateau is flat (no pressure 
gradient) and that the walls of the channel are stationary.  Plot the expected 
velocity profile as a function of depth within the channel at x= 600, 1000, and 
1400 km.  (HINT: Re-use your 1D finite-difference code for the heat equation 
– now the constant of proportionality is the viscosity and the “heat source” 
term corresponds to the pressure gradient.  The 50 mm/yr incoming velocity is 
a boundary condition at x= 0 km.) 
 

(c) How would your predicted flow rate change if the lower crustal viscosity is 10 
times larger? Or ten times smaller? 
 

 
3. Corner Flow.  (See section 6-11). 

 
a. First, using the code attached for the analytic solution for corner flow, 

calculate the velocity and streamlines for the arc and ocean corners of a 
subduction zone as shown in the figure below, where the subducting slab 
enters the mantle at a dip of 45 degrees. 
 

b. From the velocity fields you found in (a), use the equation of motion for 
an incompressible fluid (section 6-8) to solve for the pressure-gradients in 
the problem.  (These are the pressure-gradients due to flow, not due to the 
weight of the rocks above a given point.) 

 
c. Assuming a mantle density of 3300 kg/m3, how do your pressure gradients 

in (b) compare to the “lithostatic” gradient due to the weight of rocks 
above? 
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% Analytic Corner Flow Solution 
% from Bachelor Ch 4 
% Mousumi Roy, UNM 
 
clear all; 
clf 
 
% corner parameters 
thet0 = pi/4; % in radians 
thet2 = thet0*thet0; 
st0   = sin(thet0); 
st2   = st0*st0; 
ct0   = cos(thet0); 
denom = [thet2 - st2]; 
 
u1    = 1; % in some units 
u2    = 5;  
 
A = - [u1*thet2 - u2*thet0*st0]/denom; 
B = 0; 
C = [u1*thet0 + u2*thet0*ct0 - (u2 + u1*ct0)*st0]/denom; 
D = st0*(u1*st0 - u2*thet0)/denom; 
 
%define domain in cylindrical coordinates 
th = thet0*[0:0.1:1]; 
r = [0.001:5:100]; % avoid singularity at origin if we want pressures 
 
[TH, R] = meshgrid(th, r); 
 
% find cartesian domain 
[x y] = pol2cart(TH,R); 
 
f    = A*sin(TH) + C*TH.*sin(TH) + D*TH.*cos(TH); 
psi  = R.*f; 
 
ur = A*cos(TH) + C*(sin(TH) + TH.*cos(TH)) + D*(cos(TH) - TH.*sin(TH)); 
ut = -f; 
 
vx = [ur.*cos(TH)-ut.*sin(TH)]; 
vy = [ur.*sin(TH)+ut.*cos(TH)]; 
 
quiver(x, y, vx, vy); hold on 
plot(x,y,'b.'); 
axis equal 
contour(x,y,psi); 
 




