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PHYC 480/581   EARTH DEFORMATION 
HOMEWORK 2      DUE TUESDAY, OCTOBER 7TH 
 
 

1. A cooling half-space.  If we assume the depth x is in km and time, t is in my, and 
 κ = 25 km2/my, then the solution for a cooling half-space is 
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where T0 is the initial temperature, ΔT is the thermal perturbation imposed at the 
surface of the half-space at t=0, and 2√κ = 10 km/my1/2.   
 
Program this equation into Matlab and plot the temperature as a function of depth 
(x from 0-35 km) for T0=0oC and perturbation ΔT=100oC, at t=0.01, 0.1, 1, 10, 
100 my. 
 

2. Now solve this same problem using a finite difference approach in Matlab.  First, 
define a model domain using an array, x, from 0 to 35 km. Choose a discretization 
dx and a time step, dt. 

 
Initial condition: Start with a temperature array initially, Tinit, that is zero 
everywhere (Tinit is the same length as the x array). 
 
Boundary condition: Set the first element of the temperature array, which 
corresponds to zero depth, to be T(1)=ΔT=100oC, representing a temperature of 
ΔT=100oC at the surface. 
 
(a) Show that your solution is stable when κdt/dx2 <<1 and unstable (you get 

nonsense when κdt/dx2 >>1. 
(b) Using a stable discretization, show that you can match the analytically 

expected solution (from question 1). 
 

3. In lecture we discussed the linear superposition idea for the cooling of a vertical, 
planar magma-filled crack (a “dike” in geology jargon).   
 

a. Use the same type of linear superposition, to derive the following analytic 
solution for the cooling of a horizontal planar, magma-filled crack (a “sill” 
in geology jargon): 
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Here, ΔT is the excess temperature of the sill, Tb is the initial background 
geotherm (e.g., linear), and x1 and x2 are the depths to the top and bottom 
of the sill. 
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REMEMBER that we want the analytic solution to automatically satisfy 
the boundary condition that the temperature is zero at the surface – this 
means you will need an “image sill” in the air to counteract the effects of 
the actual sill. 
 

b. Now program the analytic solution into Matlab, assuming that the 
background linear geotherm is Tb=25 oC/km, ΔT=500 oC, and x1=2 km and 
x2=2.5 km (sill is 500 m thick).  Plot the temperature as a function of depth 
(x from 0-35 km) at t=0.01, 0.1, 1, 10, 100 my. 
 

c. Now solve this same problem using a finite difference approach in Matlab.  
First, define a model domain using an array, x, from 0 to 35 km. Choose a 
discretization, dx, and a time step, dt. 

 
Initial condition: Start with a temperature array initially, Tinit, that is equal 
to Tb everywhere (Tb is the same length as the x array and is linearly 
increasing with x at 25 oC/km). 

 
Boundary condition: Set the first element of the temperature array, which 
corresponds to zero depth, to be T(1)=0oC, representing a fixed surface 
temperature of 0oC at the surface. 
 
Plot the temperature as a function of depth (x from 0-35 km) at t=0.01, 
0.1, 1, 10, 100 my and compare to your analytic results in (b) for 
confirmation. 
 

4. Plumes vs. No Plumes.  There is an ongoing debate about the role of deep-sourced 
mantle plumes in the observed volcanism at so-called “hot spots” such as Hawaii 
and Iceland.  You can find out more here: http://www.mantleplumes.org/ 
 
First, lets assume that there is a deep-seated mantle plume beneath the mid-ocean 
ridge in Iceland.  
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As shown in the diagram, the lithosphere at the mid-ocean ridge must 
move apart, so we can assume that the material upwelling in the plume 
replaces the material moved out laterally by plate spreading, at least down 
to the average depth of the melting region.   Assume that the lithosphere 
and the asthenosphere melting region are 125 km and 100 km thick, 
respectively, and the velocity profile in the asthenosphere is linear, as 
shown.  
 

a. Find the volume flux of material in the plume for every km along the ridge 
axis (think of this 1 km length as distance in/out of the page) as a function 
of the full spreading rate, VL.  
 

b. Assuming typical mantle density and specific heat capacity, and assuming 
that the plume material is hotter than average mantle by ΔT=200 oC, what 
is the volumetric heat flux (again per 1 km along the ridge axis) supplied 
by the plume? 

 
c. If there is no plume beneath Iceland, but instead all the excess melting is 

just due to anomalously melt-able mantle, then we might expect a normal 
ridge-like thermal structure beneath Iceland.  To get an idea of what that 
expected thermal structure is, use the plate-cooling model parameters for 
the global model GDH1 (Stein and Stein, 1992; on website), and calculate 
the temperature as a function of depth and distance from the ridge-axis – 
this would be easiest to do in Matlab.  To do this, you need to decide how 
many terms to keep in the series expansion and investigate how the 
solution changes if you keep more/less terms. 

 
d. Use the plate cooling model to plot out the predicted heat flow (per 1 km 

along the ridge axis) into the base of the plate (at y=yL) within a 200 km 
wide region surrounding the ridge.  (You will need to integrate the heat 
flow going into the base of the plate-cooling model over x=-100 km and 
x=+100 km.)  Comparing this number to your answer in (b), would you 
say that heatflow data can distinguish between the presence and absence 
of a plume beneath Iceland? 

 
e. Finally, plot out the predicted surface heat flow (per 1 km along the ridge 

axis) from the GDH1 model.  How does this compare to the actual heat 
flow data from Iceland? (Your comparison may be qualitative here.  See 
the discussion in A&G-2003-Stein-1.8-1.10.pdf on website).   

 


