Earth Deformation
 Homework 1

Michał Dichter
October 7, 2014

Problem 1 (T+S Problem 2-5)

We assume the setup of Figure 2-4 from Turcotte and Schubert:

We are given the following values:

$$
\begin{aligned}
h_{c c} & =35 \mathrm{~km} \\
h_{s b} & =7 \mathrm{~km} \\
\rho_{m} & =3300 \mathrm{~kg} / \mathrm{m}^{3} \\
\rho_{c c} & =2700 \mathrm{~kg} / \mathrm{m}^{3} \\
\rho_{s} & =2450 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

We need to solve equation (2-10):

$$
h_{s b}=h_{c c}\left(\frac{\rho_{m}-\rho_{c c}}{\rho_{m}-\rho_{s}}\right)\left(1-\frac{1}{\alpha}\right)
$$

Plugging in the values above we get:

$$
\alpha \equiv \frac{w_{b}}{w_{0}} \approx 1.4
$$

Problem 2 (Rotational symmetry of a crystal)

Let us take some matrix A :

$$
A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

Matrix of a 90-degree counter-clockwise rotation about x :

$$
R_{x}(90)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

Matrix of a 90-degree counter-clockwise rotation about y :

$$
R_{y}(90)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

Matrix of a 90-degree counter-clockwise rotation about z :

$$
R_{z}(90)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The matrix A rotated 90 degrees about x :

$$
A_{\mathrm{rot.x}}=R_{x} A R_{x}^{-1}=\left(\begin{array}{ccc}
a & -c & b \\
-g & i & -h \\
d & -f & e
\end{array}\right)
$$

The matrix A rotated 90 degrees about y :

$$
A_{\mathrm{rot.} \mathrm{y}}=R_{y} A R_{y}^{-1}=\left(\begin{array}{ccc}
i & h & -g \\
f & e & -d \\
-c & -b & a
\end{array}\right)
$$

The matrix A rotated 90 degrees about z :

$$
A_{\mathrm{rot.} \mathrm{z}}=R_{z} A R_{z}^{-1}=\left(\begin{array}{ccc}
e & -d & -f \\
-b & a & c \\
-h & g & i
\end{array}\right)
$$

The problem states that we must have:

$$
A_{\text {rot.x }}=A_{\text {rot.y }}=A_{\text {rot.z }}=A
$$

Thus we can conclude that all of the off-diagonal components must be zero and that $a=e=i$ such that the matrix A must be of the form:

$$
A=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right)
$$

We therefore conclude that the matrix A has only one independent component!

Problem 3 (T+S Problem 2-13)

We can construct the following diagram:

Force balance in the \hat{x} direction tells us that:

$$
\sigma_{y x} \mathrm{OA}-\sigma_{x x} \mathrm{OB}-\sigma_{y^{\prime} x^{\prime}} \cos (\theta) \mathrm{AB}+\sigma_{y^{\prime} y^{\prime}} \sin (\theta) \mathrm{AB}=0
$$

We can divide both sides by AB and rearrange:

$$
\sigma_{y^{\prime} x^{\prime}} \cos \theta-\sigma_{y^{\prime} y^{\prime}} \sin \theta=\sigma_{y x} \cos \theta-\sigma_{x x} \sin \theta
$$

Now multiply both sides by $\sin \theta$:

$$
\text { (夫) } \quad \sigma_{y^{\prime} x^{\prime}} \sin \theta \cos \theta-\sigma_{y^{\prime} y^{\prime}} \sin ^{2} \theta=\sigma_{y x} \sin \theta \cos \theta-\sigma_{x x} \sin ^{2} \theta
$$

Force balance in the \hat{y} direction tells us that:

$$
\sigma_{y y} \mathrm{OA}-\sigma_{x y} \mathrm{OB}-\sigma_{y^{\prime} x^{\prime}} \sin (\theta) \mathrm{AB}-\sigma_{y^{\prime} y^{\prime}} \cos (\theta) \mathrm{AB}=0
$$

We can divide both sides by AB and rearrange:

$$
\sigma_{y^{\prime} x^{\prime}} \sin \theta+\sigma_{y^{\prime} y^{\prime}} \cos \theta=\sigma_{y y} \cos \theta-\sigma_{x y} \sin \theta
$$

Now multiply both sides by $\cos \theta$:

$$
(\star \star) \quad \sigma_{y^{\prime} x^{\prime}} \sin \theta \cos \theta+\sigma_{y^{\prime} y^{\prime}} \cos ^{2} \theta=\sigma_{y y} \cos ^{2} \theta-\sigma_{x y} \sin \theta \cos \theta
$$

Now use the symmetry of the stress tensor to say that $\sigma_{x y}=\sigma_{y x}$ and subtract (\star) from ($\star \star$):

$$
\sigma_{y^{\prime} y^{\prime}}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sigma_{x x} \sin ^{2} \theta+\sigma_{y y} \cos ^{2} \theta-2 \sigma_{x y} \sin \theta \cos \theta
$$

Now recall that $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $2 \sin \theta \cos \theta=\sin 2 \theta$. So we see that:

$$
\sigma_{y^{\prime} y^{\prime}}=\sigma_{x x} \sin ^{2} \theta+\sigma_{y y} \cos ^{2} \theta-\sigma_{x y} \sin 2 \theta
$$

Problem 4 (Stress tensor)

We are given the following stress tensor:

$$
\sigma=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

We can calculate the pressure p :

$$
p \equiv \frac{\sigma_{x x}+\sigma_{y y}+\sigma_{z z}}{3}=\frac{1+1+2}{3}=\frac{4}{3}
$$

So we know the isotropic part of σ :

$$
\sigma_{\text {iso }}=\left(\begin{array}{ccc}
\frac{4}{3} & 0 & 0 \\
0 & \frac{4}{3} & 0 \\
0 & 0 & \frac{4}{3}
\end{array}\right)
$$

And the deviatoric part of σ :

$$
\sigma_{\mathrm{dev}}=\sigma-\sigma_{\mathrm{iso}}=\left(\begin{array}{ccc}
-\frac{1}{3} & 1 & 0 \\
1 & -\frac{1}{3} & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right)
$$

The eigenvalues of σ are:

$$
\begin{aligned}
\sigma_{\mathrm{I}} & =2 \\
\sigma_{\mathrm{II}} & =2 \\
\sigma_{\mathrm{III}} & =0
\end{aligned}
$$

And the corresponding eigenvectors are:

$$
\begin{gathered}
\mathrm{I}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\mathrm{II}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
\mathrm{III}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
\end{gathered}
$$

It is easy to see that these three eigenvectors are all mutually orthogonal (the dot product of any two equals zero) - they form an "orthonormal basis."

Problem 5 (Mohr circle)

We can construct the following schematic diagram:

We can calculate the slope μ from point A to point B as a function of the angle 2α :

$$
(\star) \quad \mu=\left(\frac{\Delta \tau_{n}}{\Delta \sigma_{n}}\right)_{A \rightarrow B}=\frac{\left(R_{B}-R_{A}\right) \sin 2 \alpha}{\left(\sigma_{2}^{B}-\sigma_{2}^{A}\right)+\left(R_{B}-R_{A}\right)(1+\cos 2 \alpha)}
$$

We also know that the line perpendicular to $\tau_{n}=C_{0}+\mu \sigma_{n}$ drawn from M to A (or from N to B) has a slope of $-1 / \mu$:

$$
(\star \star) \quad-\frac{1}{\mu}=\left(\frac{\Delta \tau_{n}}{\Delta \sigma_{n}}\right)_{M \rightarrow A}=\frac{R_{A} \sin 2 \alpha}{\left(\sigma_{2}^{A}+R_{A}+R_{A} \cos 2 \alpha\right)-\left(\sigma_{2}^{A}+R_{A}\right)}=\tan 2 \alpha
$$

Recall that we know the following values:

$$
\begin{gathered}
\sigma_{1}^{A}=1100 \mathrm{MPa} \\
\sigma_{2}^{A}=20 \mathrm{MPa} \\
\sigma_{1}^{B}=1700 \mathrm{MPa} \\
\sigma_{2}^{B}=40 \mathrm{MPa} \\
R_{A}=\frac{\sigma_{1}^{A}-\sigma_{2}^{A}}{2}=540 \mathrm{MPa} \\
R_{B}=\frac{\sigma_{1}^{B}-\sigma_{2}^{B}}{2}=830 \mathrm{MPa}
\end{gathered}
$$

We can now solve (\star) and ($\star \star$) for μ and α :

$$
\mu \approx 2.65
$$

$$
\alpha \approx 1.39 \text { radians } \approx 79.65 \text { degrees }
$$

We can use some geometry to solve for C_{0} (see the labels on the diagram):

$$
\cos (2 \alpha-\pi / 2)=\frac{a}{h}
$$

We know a so we can further say:

$$
h=\frac{\sigma_{2}^{A}+R_{A}+R_{A} \cos 2 \alpha}{\cos (2 \alpha-\pi / 2)} \approx 155 \mathrm{MPa}
$$

Now:

$$
b=h \cos 2 \alpha \approx 145 \mathrm{MPa}
$$

So:

$$
C_{0} \approx 45.64 \mathrm{MPa}
$$

Now we suspect that a $3^{\text {rd }}$ sample had a pre-existing crack. Then $C_{0}=0$ and we can calculate the two points where the failure criterion curve intersects the Mohr circle. For the $1^{\text {st }}$ test: $72.6^{\circ}<\alpha<86.7^{\circ}$. For the $2^{\text {nd }}$ test: $74.0^{\circ}<\alpha<85.3^{\circ}$. N.B. You can solve the whole problem by plotting Test 1 and Test 2 on graph paper!

Problem 6 (Strain accumulation at the San Andreas Fault)

We are given the deformation gradient tensor:

$$
D=\left(\begin{array}{cc}
0.15 & 0.24 \\
0.00 & -0.15
\end{array}\right)
$$

We can decompose the deformation gradient tensor into a symmetric tensor and an antisymmetric tensor:

$$
D=\left(\begin{array}{cc}
0.15 & 0.12 \\
0.12 & -0.15
\end{array}\right)+\left(\begin{array}{cc}
0.00 & 0.12 \\
-0.12 & 0.00
\end{array}\right)
$$

We know that the San Andreas Fault trends $\mathrm{N} 65^{\circ} \mathrm{W}$ so let us rotate the strain tensor counterclockwise into that coordinate system:

$$
\begin{gathered}
\epsilon^{*}=\left(\begin{array}{cc}
\cos 65^{\circ} & \sin 65^{\circ} \\
-\sin 65^{\circ} & \cos 65^{\circ}
\end{array}\right)\left(\begin{array}{cc}
0.15 & 0.12 \\
0.12 & -0.15
\end{array}\right)\left(\begin{array}{cc}
\cos 65^{\circ} & \sin 65^{\circ} \\
-\sin 65^{\circ} & \cos 65^{\circ}
\end{array}\right)^{-1} \\
=\left(\begin{array}{cc}
-0.004 & -0.192 \\
-0.192 & 0.004
\end{array}\right)
\end{gathered}
$$

We see that the fault-shear strains (off-diagonal components) are rather large compared to the fault-normal strains (diagonal components). This is exactly what we expect for a strikeslip fault such as the San Andreas! The dilatation Δ equals the trace (sum of the diagonal elements) of ϵ. Thus we can see $\Delta=0$.

Problem 7 (T+S Problem 3-19)

Equation (3-132) tells us the functional form $w(x)$ of the plate deflection:

$$
w(x)=w_{0} e^{-x / \alpha}\left(\cos \frac{x}{\alpha}+\sin \frac{x}{\alpha}\right)
$$

To get to the bending moment M we need to calculate the second derivative of $w(x)$:

$$
\frac{d^{2} w}{d x^{2}}=\frac{2 w_{0} e^{-x / \alpha}}{\alpha^{2}}\left(\sin \frac{x}{\alpha}-\cos \frac{x}{\alpha}\right)
$$

The bending moment M is proportional to the second derivative of $w(x)$:

$$
M=-D \frac{d^{2} w}{d x^{2}}
$$

We want to calculate the maximum value of M so we must take a derivative and set it equal to zero:

$$
\frac{d M}{d x}=\frac{4 D}{\alpha^{3}} e^{-x / \alpha} \cos \frac{x}{\alpha}=0
$$

The above is true for:

$$
x_{\max }= \pm \frac{\pi \alpha}{2}
$$

Now we can plug back in for M_{m} and get equation (3-138):

$$
M_{\max } \approx-0.416 \frac{D w_{0}}{\alpha^{2}}
$$

We can use the values given to estimate the maximum bending moment in the lithosphere:

$$
M_{\max } \approx-1.6 \times 10^{17} \mathrm{~N}
$$

The maximum bending (fiber) stress $\sigma_{x x}^{\max }$ is then given by equation (3-86):

$$
\sigma_{x x}^{\max }= \pm \frac{6 M}{h^{2}} \approx 8.1 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
$$

The + corresponds to the tensile stress at the top of the plate and the - corresponds to the compressive stress at the bottom of the plate.

Problem 8 (T+S Problem 3-22)

We are told that the Amazon River Basin has a width $w=400 \mathrm{~km}$. We are to model the basin as an elastic plate subject to a central line load (see Figures 3-29 and 3-30). We can use equation (3-135) to solve for the flexural parameter α :

$$
\begin{gathered}
x_{b}=\pi \alpha \\
\frac{400 \mathrm{~km}}{2}=\pi \alpha \\
\alpha \approx 64 \mathrm{~km}
\end{gathered}
$$

We know that $\left(\rho_{m}-\rho_{s}\right)=700 \mathrm{~kg} / \mathrm{m}^{3}$ so we can solve for the flexural rigidity D :

$$
\begin{aligned}
\alpha & =\left[\frac{4 D}{\left(\rho_{m}-\rho_{s}\right) g}\right]^{1 / 4} \\
D & \approx 2.9 \times 10^{22} \mathrm{Nm}
\end{aligned}
$$

Now we can solve for the thickness T_{e} of the elastic lithosphere:

$$
\begin{gathered}
D=\frac{E T_{e}^{3}}{12\left(1-\nu^{2}\right)} \\
T_{e} \approx 17 \mathrm{~km}
\end{gathered}
$$

Note the rather small value of T_{e} here.

Problem 9 (Dabbahu laccolith)

Start from the flexure equation:

$$
D \frac{d^{4} w}{d x^{4}}=q(x)-P \frac{d^{w}}{d x^{2}}
$$

Note that $P=0$ here. We can separate variables and integrate the equation four times to get:

$$
w(x)=\frac{q x^{4}}{24 D}+\alpha x^{3}+\beta x^{2}+\gamma x+\delta
$$

The Greek letters are constants to be determined by four boundary conditions:

$$
\begin{aligned}
& w(\pm L / 2)=0 \\
& \left.\frac{d w}{d x}\right|_{x= \pm \frac{L}{2}}=0
\end{aligned}
$$

The first two BCs tell us that $\alpha=\gamma=0$. The second two BCs tell us:

$$
\begin{aligned}
& \beta=\frac{-q L^{2}}{48 D} \\
& \delta=\frac{q L^{4}}{384 D}
\end{aligned}
$$

So we get:

$$
w(x)=\frac{q x^{4}}{24 D}+\frac{q L^{2} x^{2}}{48 D}+\frac{q L^{4}}{384 D}
$$

If we define:

$$
w_{0} \equiv \frac{q L^{4}}{384 D}
$$

Then we can rewrite $w(x)$ as:

$$
w(x)=w_{0}\left(1-\frac{8}{L^{2}} x^{2}+\frac{16}{L^{4}} x^{4}\right)
$$

If we write $w(x)$ as $a-b x^{2}+c x^{4}$ then we can do a polynomial fit for the Dabbahu data. The parameter a tells us a value for $w_{0}-\mathrm{I}$ got $w_{0} \approx 148 \mathrm{~mm}$. We can use b and c to calculate L as follows:

$$
\begin{aligned}
& \frac{b}{c}=\frac{L^{2}}{2} \\
\Rightarrow & L \approx 45 \mathrm{~km}
\end{aligned}
$$

Now we can use equation $(3-127)$ to calculate the flexural rigidity D :

$$
\begin{aligned}
& D=\frac{g L^{4}\left(\rho_{c}-\rho_{\mathrm{mag}}\right)}{256} \\
\Rightarrow & D \approx 6.5 \times 10^{19} \mathrm{Nm}
\end{aligned}
$$

We can use our value of D to solve for the plate thickness h :

$$
\begin{aligned}
& D=\frac{E h^{3}}{12\left(1-\nu^{2}\right)} \\
& \Rightarrow h \approx 2.2 \mathrm{~km}
\end{aligned}
$$

Finally we can solve for the magma pressure p :

$$
\begin{aligned}
w_{0} & =\frac{q}{D}=\frac{\rho_{c} g h-p}{D} \\
& \Rightarrow p \approx 57 \mathrm{MPa}
\end{aligned}
$$

Two kilometers or so to the roof of the laccolith seems reasonable given that Dabbahu sits on a plate triple junction (Somalian-Nubian-Arabian).

We expect dykes to nucleate at areas of great tensional stress. We know how the normal strain $\epsilon_{x x}(x, y)$ relates to the normal stress $\sigma_{x x}(x, y)$:

$$
\sigma_{x x}(x, y)=\frac{E}{1-\nu^{2}} \epsilon_{x x}(x, y)
$$

And we know how $\epsilon_{x x}(x, y)$ relates to the deflection $w(x)$:

$$
\epsilon_{x x}(x, y)=-y \frac{d^{2} w}{d x^{2}}
$$

Now we can take the second derivative of the deflection $w(x)$ at evaluate that at $y=+h / 2$ (the bottom of the plate):

$$
\epsilon_{x x}(x)=\frac{q h L^{2}}{48 D}\left(1-\frac{12}{L^{2}} x^{2}\right)
$$

So the normal stresses $\sigma_{x x}(x)$ at the bottom of the plate can be found - recall that $D=$ $E h^{3} / 12\left(1-\nu^{2}\right)$:

$$
\sigma_{x x}(x)=\frac{E}{1-\nu^{2}} \epsilon_{x x}(x)=\frac{q L^{2}}{4 h^{2}}\left(1-\frac{12}{L^{2}} x^{2}\right)
$$

We want the value of $x \in[-L / 2, L / 2]$ that produces the greatest negative (tensional) value of stress. We can see that $\sigma_{x x}(x)$ plots as a concave-downward parabola. Thus the greatest negative stresses must occur at the endpoints of the model domain - at $x=-L / 2$ and $x=+L / 2$.

Problem 10 (Broken plate flexure)

Blue: $V_{0}=-1.5 \times 10^{12} \mathrm{~N} / \mathrm{m}$ and $M_{0}=-5.0 \times 10^{17} \mathrm{~N}$. Purple: $V_{0}=0 \mathrm{~N} / \mathrm{m}$ and $M_{0}=$ $-5.0 \times 10^{17} \mathrm{~N}$. Yellow: $V_{0}=-1.5 \times 10^{12} \mathrm{~N} / \mathrm{m}$ and $M_{0}=0 \mathrm{~N}$.

The flexural response depends upon the flexural rigidity D of the plate which scales as the cube(!) of the elastic plate thickness. In other words: A modest change to T_{e} greatly changes the flexural response of the plate.

Problem 11 (Adding topography)

We cannot use the shape of the Ganges Foredeep Basin (circled in green) to study slab-pull on the subducting Indian Plate. This is because the flexural response of the plate around the Foredeep Basin looks the same with or without loading at $x=0$. Thus topography alone controls the shape of the Basin - at least for the case at hand.

