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Problem 1 (T+4S Problem 2-5)

We assume the setup of Figure 2-4 from Turcotte and Schubert:
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We are given the following values:

hee = 35 km
hsb =7 km

pm = 3300 kg/m3
pee = 2700 kg/m3
ps = 2450 kg/m3

We need to solve equation (2-10):

Plugging in the values above we get:




Problem 2 (Rotational symmetry of a crystal)

Let us take some matrix A:

A:

e e
>0 o
S 0

Matrix of a 90-degree counter-clockwise rotation about x:

10 0
R,(90)=| 0 0 -1
01 0

Matrix of a 90-degree counter-clockwise rotation about y

0
R,(90)= | o©

o~ O
S O =

1

Matrix of a 90-degree counter-clockwise rotation about z

0 -1 0
R.(90)=| 1 0 0
0 0 1

:’>
|
|

The matrix A rotated 90 degrees about z:

a —c b
Arrx =R;AR;' = —g i —h
d —f e
The matrix A rotated 90 degrees about y:
i -9
Aty =RyAR'=| f e —d
— —=b a
The matrix A rotated 90 degrees about z:
e —-d —f
Arot.z = RZAR;:[ = —b a C
—h g ;

The problem states that we must have:
Arot.x = Arot.y = Arot.z =A

Thus we can conclude that all of the off-diagonal components must be zero and that a = e =1
such that the matrix A must be of the form:

A=

o o e
o O
Q OO

We therefore conclude that the matrix A has only one independent component!



Problem 3 (T+S Problem 2-13)

We can construct the following diagram:

A

Vy

Force balance in the & direction tells us that:
0ysOA — 0,,0B — 0,757 cos(0)AB + 0,7, sin(9)AB = 0
We can divide both sides by AB and rearrange:
Oyrar COS O — 0yry SINO = 0y cOS O — 045 siN O
Now multiply both sides by sin 6:
(%) Oy sindcosd — oy, sin® @ = 0, sin 0 cos § — 0, sin® 0
Force balance in the g direction tells us that:
0yyOA — 0,,0B — 0y, sin(6)AB — oy cos()AB =0
We can divide both sides by AB and rearrange:
Oyra SINO + 0yryr cOs 0 = 0y cOs O — 04y sin 6
Now multiply both sides by cos 6:
(k%) Oy sinfcosd + oy cos® § = oy, cos® O — o, sin 6 cos 6
Now use the symmetry of the stress tensor to say that o,, = 0y, and subtract (x) from (*):
Oyry (sin? @ + cos? ) = o, sin? 6 + Tyy cos? § — 204, sinf cos 6

Now recall that sin?6 + cos?20 = 1 and 2sin 6 cos = sin 26. So we see that:

B . 2 2 .
Oyty! = Ogg SIN~ 0 + 0y cos™ 0 — 04, 5in 20




Problem 4 (Stress tensor)

We are given the following stress tensor:

We can calculate the pressure p:

O-a;x+Uyy+0'zz_1+1+2_4

p

3 3 3
So we know the isotropic part of o:
4
3 000
Oiso =— 0 3 g
0 0 3
And the deviatoric part of o:
1
Odev = 0 — Ojgo = 1 -3 0
0 2
3

The eigenvalues of o are:

o1 = 2
o =2
om =0
And the corresponding eigenvectors are:
0
I=10
1
1
1
I=—11
V2 \g
1
1
m=—=1-1

V2 \ o

It is easy to see that these three eigenvectors are all mutually orthogonal (the dot product of
any two equals zero) — they form an “orthonormal basis.”



Problem 5 (Mohr circle)

We can construct the following schematic diagram:

— 00—
A )

We can calculate the slope p from point A to point B as a function of the angle 2a:

*) B (ATn) B (R — R4)sin2a
H=\A0n ) sp ~ (08 — o)+ (Rp — Ra)(1+ cos 2a)

We also know that the line perpendicular to 7, = Cy + po,, drawn from M to A (or from N
to B) has a slope of —1/p:

1 AT, R sin 2«
() ——= = = = tan 2«
M Aoy ) aroa (05 +Ra+ Racos2a) — (05 + Ra)

Recall that we know the following values:

ot = 1100 MPa
03 = 20MPa

o = 1700 MPa

o =40 MPa
A A
Ra=21"7%2 _ 540 MPa
B_ B
Rp = % — 830 MPa

We can now solve () and (x«) for x4 and a:

’a ~ 1.39 radians ~ 79.65 degrees




We can use some geometry to solve for Cy (see the labels on the diagram):

cos(2a — /2) =

> e

We know a so we can further say:

A 59
b 05 + Ra + R4 cos2a ~ 155 MPa.
cos(2a — 7/2)

Now:
b = hcos2a ~ 145 MPa

So:

Co =~ 45.64 MPa

Now we suspect that a 3'4 sample had a pre-existing crack. Then Cy = 0 and we can calculate
the two points where the failure criterion curve intersects the Mohr circle. For the 15 test:
72.6° < o < 86.7°. For the 2" test: 74.0° < a < 85.3°. N.B. You can solve the whole
problem by plotting Test 1 and Test 2 on graph paper!

Problem 6 (Strain accumulation at the San Andreas Fault)

We are given the deformation gradient tensor:
0.15 0.24
D= < 0.00 —0.15 )
We can decompose the deformation gradient tensor into a symmetric tensor and an antisym-

metric tensor:
D— 0.15 0.12 + 0.00 0.12
o 0.12 —-0.15 —0.12 0.00
We know that the San Andreas Fault trends N65°W so let us rotate the strain tensor counter-
clockwise into that coordinate system:

. cos65°  sin65° 0.15 0.12 cos65°  sin65° \ '
€= —8in 65° cos65° 0.12 -0.15 —8in65°  cos65°

[ —0.004 —0.192
—\ —0.192  0.004

We see that the fault-shear strains (off-diagonal components) are rather large compared to
the fault-normal strains (diagonal components). This is exactly what we expect for a strike-
slip fault such as the San Andreas! The dilatation A equals the trace (sum of the diagonal
elements) of e. Thus we can see A = 0.



Problem 7 (T+S Problem 3-19)
Equation (3-132) tells us the functional form w(z) of the plate deflection:

x x
w(z) = woe™*/® (cos — +sin —)
e !

To get to the bending moment M we need to calculate the second derivative of w(x):

d27w _ Quge /™ ( T x)
dxz? a?

sin — — cos —
« «

The bending moment M is proportional to the second derivative of w(z):

Pw

M=-D——
dx?

We want to calculate the maximum value of M so we must take a derivative and set it equal
to zero:

dM 4D —a/a T
E = ge cos— =10
The above is true for:
T
Tmax = ii
2

Now we can plug back in for M,, and get equation (3-138):

Dwo
a?

Mpax =~ —0.416

We can use the values given to estimate the maximum bending moment in the lithosphere:
Mppax =~ —1.6 x 10'7 N

The maximum bending (fiber) stress ?* is then given by equation (3-86):

6M
gmax — ﬁ ~ 8.1 X 108 :N/Ul2

xrx

The + corresponds to the tensile stress at the top of the plate and the — corresponds to the
compressive stress at the bottom of the plate.



Problem 8 (T+S Problem 3-22)

We are told that the Amazon River Basin has a width w = 400 km. We are to model the
basin as an elastic plate subject to a central line load (see Figures 3-29 and 3-30). We can use
equation (3-135) to solve for the flexural parameter a:

Ty =TT

400 km
2
a ~ 64 km

=TT

We know that (p,, — ps) = 700 kg/m? so we can solve for the flexural rigidity D:

o =

4D 1/4
[(pm - ps)g]
D 2.9 x 10** Nm
Now we can solve for the thickness T, of the elastic lithosphere:
ET?
12(1 — 1?)

T, ~ 17 km

Note the rather small value of T, here.

D =

Problem 9 (Dabbahu laccolith)

Start from the flexure equation:

dw _ - pd”
da:4_qx dx?

Note that P = 0 here. We can separate variables and integrate the equation four times to get:

gz’

w(x):m—i-aa??’—i—ﬁxz—l—'yx—i—é

The Greek letters are constants to be determined by four boundary conditions:

w(£L/2) =0
dw _0
dx :c::l:%

The first two BCs tell us that & = v = 0. The second two BCs tell us:

—ql?
5 q
48D
_ ql?
384D
So we get:
4 LQ 2 L4
w(x) _qr T qL~x q
24D 48D 384D
If we define:




Then we can rewrite w(z) as:
8 16
w(z) = wp (1 - ﬁxZ + L4x4>

If we write w(z) as a — bz? + cz? then we can do a polynomial fit for the Dabbahu data. The

parameter a tells us a value for wg — I got . We can use b and c to calculate

L as follows:
b L2

c 2

NrErT=

Now we can use equation (3-127) to calculate the flexural rigidity D:

D= 9L4(Pc — pmag)
256

—|D~65x10" Nm|
We can use our value of D to solve for the plate thickness h:
Eh3
12(1 — v?)

=[h~22 k]

Finally we can solve for the magma pressure p:

D =

4 _ pegh—p
D D

=|p~ 57 MPa
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Two kilometers or so to the roof of the laccolith seems reasonable given that Dabbahu sits on
a plate triple junction (Somalian-Nubian-Arabian).

We expect dykes to nucleate at areas of great tensional stress. We know how the normal strain
€x2(x,y) relates to the normal stress 0., (z,y):
E
mﬁm (z,9)
And we know how €, (z,y) relates to the deflection w(z):
_ d*w
€2a(T,y) = _y@

Now we can take the second derivative of the deflection w(x) at evaluate that at y = +h/2

(the bottom of the plate):
ghL? 12 ,
= — 1 _ —
“=(%) = 5D ( 2"

So the normal stresses 0., (x) at the bottom of the plate can be found — recall that D =
ER3/12(1 — v?):

Uza:(xu y) =

E qL? 12
Ua::r(x) = meza:(x) = m <1 - L2x2>

We want the value of © € [—L/2, L/2] that produces the greatest negative (tensional) value of
stress. We can see that o, (x) plots as a concave-downward parabola. Thus the greatest neg-
ative stresses must occur at the endpoints of the model domain — at z = —L/2 and © = +L/2.

Problem 10 (Broken plate flexure)

Blue: Vo = —1.5 x 10?2 N/m and My = —5.0 x 107 N. Purple: V5 = 0 N/m and My =
—5.0 x 10'7 N. Yellow: Vp = —1.5 x 102 N/m and My =0 N.

Flexure of plates for different end-loads Vg and Mg

10+

(km)

W (X)

20+

251

0 50 100 150 200 250 300 350 400
Distance from application of Vy and Mg (km)

The flexural response depends upon the flexural rigidity D of the plate which scales as the
cube(!) of the elastic plate thickness. In other words: A modest change to T, greatly changes
the flexural response of the plate.



Problem 11 (Adding topography)

Flexure of a plate w/ only topo (Vg=My=0) (red)
and w/ topo plus nonzero Vg and My (blue)
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Flexure of a plate w/ only topo (Vg=Mpy=0) (red)
and w/ topo plus nonzero Vo, and Mg (blue)
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We cannot use the shape of the Ganges Foredeep Basin (circled in green) to study slab-pull
on the subducting Indian Plate. This is because the flexural response of the plate around the
Foredeep Basin looks the same with or without loading at * = 0. Thus topography alone

controls the shape of the Basin — at least for the case at hand.



