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Problem 1 (T+S Problem 2-5)

We assume the setup of Figure 2-4 from Turcotte and Schubert:

We are given the following values:

hcc = 35 km

hsb = 7 km

ρm = 3300 kg/m3

ρcc = 2700 kg/m3

ρs = 2450 kg/m3

We need to solve equation (2-10):

hsb = hcc

(
ρm − ρcc
ρm − ρs

)(
1− 1

α

)
Plugging in the values above we get:

α ≡ wb
w0
≈ 1.4



Problem 2 (Rotational symmetry of a crystal)

Let us take some matrix A:

A =

 a b c
d e f
g h i


Matrix of a 90-degree counter-clockwise rotation about x:

Rx(90) =

 1 0 0
0 0 −1
0 1 0


Matrix of a 90-degree counter-clockwise rotation about y:

Ry(90) =

 0 0 1
0 1 0
−1 0 0


Matrix of a 90-degree counter-clockwise rotation about z:

Rz(90) =

 0 −1 0
1 0 0
0 0 1


The matrix A rotated 90 degrees about x:

Arot.x = RxAR
−1
x =

 a −c b
−g i −h
d −f e


The matrix A rotated 90 degrees about y:

Arot.y = RyAR
−1
y =

 i h −g
f e −d
−c −b a


The matrix A rotated 90 degrees about z:

Arot.z = RzAR
−1
z =

 e −d −f
−b a c
−h g i


The problem states that we must have:

Arot.x = Arot.y = Arot.z = A

Thus we can conclude that all of the off-diagonal components must be zero and that a = e = i
such that the matrix A must be of the form:

A =

 a 0 0
0 a 0
0 0 a


We therefore conclude that the matrix A has only one independent component!



Problem 3 (T+S Problem 2-13)

We can construct the following diagram:

  

O A

B

x

y

x '

y '
σ y ' y '

σ y ' x '

σ yy

σ yx

σ xy

σ xx

Force balance in the x̂ direction tells us that:

σyxOA− σxxOB− σy′x′ cos(θ)AB + σy′y′ sin(θ)AB = 0

We can divide both sides by AB and rearrange:

σy′x′ cos θ − σy′y′ sin θ = σyx cos θ − σxx sin θ

Now multiply both sides by sin θ:

(?) σy′x′ sin θ cos θ − σy′y′ sin2 θ = σyx sin θ cos θ − σxx sin2 θ

Force balance in the ŷ direction tells us that:

σyyOA− σxyOB− σy′x′ sin(θ)AB− σy′y′ cos(θ)AB = 0

We can divide both sides by AB and rearrange:

σy′x′ sin θ + σy′y′ cos θ = σyy cos θ − σxy sin θ

Now multiply both sides by cos θ:

(??) σy′x′ sin θ cos θ + σy′y′ cos2 θ = σyy cos2 θ − σxy sin θ cos θ

Now use the symmetry of the stress tensor to say that σxy = σyx and subtract (?) from (??):

σy′y′(sin
2 θ + cos2 θ) = σxx sin2 θ + σyy cos2 θ − 2σxy sin θ cos θ

Now recall that sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ. So we see that:

σy′y′ = σxx sin2 θ + σyy cos2 θ − σxy sin 2θ



Problem 4 (Stress tensor)

We are given the following stress tensor:

σ =

 1 1 0
1 1 0
0 0 2


We can calculate the pressure p:

p ≡ σxx + σyy + σzz
3

=
1 + 1 + 2

3
=

4

3

So we know the isotropic part of σ:

σiso =

 4
3 0 0
0 4

3 0
0 0 4

3


And the deviatoric part of σ:

σdev = σ − σiso =

 − 1
3 1 0

1 − 1
3 0

0 0 2
3


The eigenvalues of σ are:

σI = 2

σII = 2

σIII = 0

And the corresponding eigenvectors are:

I =

0
0
1



II =
1√
2

1
1
0


III =

1√
2

 1
−1
0


It is easy to see that these three eigenvectors are all mutually orthogonal (the dot product of
any two equals zero) — they form an “orthonormal basis.”



Problem 5 (Mohr circle)

We can construct the following schematic diagram:

  

τn

σn

C0

b

a

RA

RB

point A

point B

σ2
B

τn=C0+μσn

σ2
A

σ1
A

σ1
B

2α2α

M N

We can calculate the slope µ from point A to point B as a function of the angle 2α:

(?) µ =

(
∆τn
∆σn

)
A→B

=
(RB −RA) sin 2α

(σB2 − σA2 ) + (RB −RA)(1 + cos 2α)

We also know that the line perpendicular to τn = C0 + µσn drawn from M to A (or from N
to B) has a slope of −1/µ:

(??) − 1

µ
=

(
∆τn
∆σn

)
M→A

=
RA sin 2α

(σA2 +RA +RA cos 2α)− (σA2 +RA)
= tan 2α

Recall that we know the following values:

σA1 = 1100 MPa

σA2 = 20MPa

σB1 = 1700 MPa

σB2 = 40 MPa

RA =
σA1 − σA2

2
= 540 MPa

RB =
σB1 − σB2

2
= 830 MPa

We can now solve (?) and (??) for µ and α:

µ ≈ 2.65

α ≈ 1.39 radians ≈ 79.65 degrees



We can use some geometry to solve for C0 (see the labels on the diagram):

cos(2α− π/2) =
a

h

We know a so we can further say:

h =
σA2 +RA +RA cos 2α

cos(2α− π/2)
≈ 155 MPa

Now:
b = h cos 2α ≈ 145 MPa

So:
C0 ≈ 45.64 MPa

Now we suspect that a 3rd sample had a pre-existing crack. Then C0 = 0 and we can calculate
the two points where the failure criterion curve intersects the Mohr circle. For the 1st test:
72.6◦ < α < 86.7◦. For the 2nd test: 74.0◦ < α < 85.3◦. N.B. You can solve the whole
problem by plotting Test 1 and Test 2 on graph paper!

Problem 6 (Strain accumulation at the San Andreas Fault)

We are given the deformation gradient tensor:

D =

(
0.15 0.24
0.00 −0.15

)
We can decompose the deformation gradient tensor into a symmetric tensor and an antisym-
metric tensor:

D =

(
0.15 0.12
0.12 −0.15

)
+

(
0.00 0.12
−0.12 0.00

)
We know that the San Andreas Fault trends N65◦W so let us rotate the strain tensor counter-
clockwise into that coordinate system:

ε∗ =

(
cos 65◦ sin 65◦

− sin 65◦ cos 65◦

)(
0.15 0.12
0.12 −0.15

)(
cos 65◦ sin 65◦

− sin 65◦ cos 65◦

)−1

=

(
−0.004 −0.192
−0.192 0.004

)
We see that the fault-shear strains (off-diagonal components) are rather large compared to
the fault-normal strains (diagonal components). This is exactly what we expect for a strike-
slip fault such as the San Andreas! The dilatation ∆ equals the trace (sum of the diagonal
elements) of ε. Thus we can see ∆ = 0.



Problem 7 (T+S Problem 3-19)

Equation (3-132) tells us the functional form w(x) of the plate deflection:

w(x) = w0e
−x/α

(
cos

x

α
+ sin

x

α

)
To get to the bending moment M we need to calculate the second derivative of w(x):

d2w

dx2
=

2w0e
−x/α

α2

(
sin

x

α
− cos

x

α

)
The bending moment M is proportional to the second derivative of w(x):

M = −Dd
2w

dx2

We want to calculate the maximum value of M so we must take a derivative and set it equal
to zero:

dM

dx
=

4D

α3
e−x/α cos

x

α
= 0

The above is true for:

xmax = ±πα
2

Now we can plug back in for Mm and get equation (3-138):

Mmax ≈ −0.416
Dw0

α2

We can use the values given to estimate the maximum bending moment in the lithosphere:

Mmax ≈ −1.6× 1017 N

The maximum bending (fiber) stress σmax
xx is then given by equation (3-86):

σmax
xx = ±6M

h2
≈ 8.1× 108 N/m2

The + corresponds to the tensile stress at the top of the plate and the − corresponds to the
compressive stress at the bottom of the plate.



Problem 8 (T+S Problem 3-22)

We are told that the Amazon River Basin has a width w = 400 km. We are to model the
basin as an elastic plate subject to a central line load (see Figures 3-29 and 3-30). We can use
equation (3-135) to solve for the flexural parameter α:

xb = πα

400 km

2
= πα

α ≈ 64 km

We know that (ρm − ρs) = 700 kg/m3 so we can solve for the flexural rigidity D:

α =

[
4D

(ρm − ρs)g

]1/4
D ≈ 2.9× 1022 Nm

Now we can solve for the thickness Te of the elastic lithosphere:

D =
ET 3

e

12(1− ν2)

Te ≈ 17 km

Note the rather small value of Te here.

Problem 9 (Dabbahu laccolith)

Start from the flexure equation:

D
d4w

dx4
= q(x)− P dw

dx2

Note that P = 0 here. We can separate variables and integrate the equation four times to get:

w(x) =
qx4

24D
+ αx3 + βx2 + γx+ δ

The Greek letters are constants to be determined by four boundary conditions:

w(±L/2) = 0

dw

dx

∣∣∣∣
x=±L

2

= 0

The first two BCs tell us that α = γ = 0. The second two BCs tell us:

β =
−qL2

48D

δ =
qL4

384D

So we get:

w(x) =
qx4

24D
+
qL2x2

48D
+

qL4

384D

If we define:

w0 ≡
qL4

384D



Then we can rewrite w(x) as:

w(x) = w0

(
1− 8

L2
x2 +

16

L4
x4
)

If we write w(x) as a− bx2 + cx4 then we can do a polynomial fit for the Dabbahu data. The

parameter a tells us a value for w0 — I got w0 ≈ 148 mm . We can use b and c to calculate
L as follows:

b

c
=
L2

2

⇒ L ≈ 45 km

Now we can use equation (3-127) to calculate the flexural rigidity D:

D =
gL4(ρc − ρmag)

256

⇒ D ≈ 6.5× 1019 Nm

We can use our value of D to solve for the plate thickness h:

D =
Eh3

12(1− ν2)

⇒ h ≈ 2.2 km

Finally we can solve for the magma pressure p:

w0 =
q

D
=
ρcgh− p

D

⇒ p ≈ 57 MPa
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Two kilometers or so to the roof of the laccolith seems reasonable given that Dabbahu sits on
a plate triple junction (Somalian-Nubian-Arabian).

We expect dykes to nucleate at areas of great tensional stress. We know how the normal strain
εxx(x, y) relates to the normal stress σxx(x, y):

σxx(x, y) =
E

1− ν2
εxx(x, y)

And we know how εxx(x, y) relates to the deflection w(x):

εxx(x, y) = −y d
2w

dx2

Now we can take the second derivative of the deflection w(x) at evaluate that at y = +h/2
(the bottom of the plate):

εxx(x) =
qhL2

48D

(
1− 12

L2
x2
)

So the normal stresses σxx(x) at the bottom of the plate can be found — recall that D =
Eh3/12(1− ν2):

σxx(x) =
E

1− ν2
εxx(x) =

qL2

4h2

(
1− 12

L2
x2
)

We want the value of x ∈ [−L/2, L/2] that produces the greatest negative (tensional) value of
stress. We can see that σxx(x) plots as a concave-downward parabola. Thus the greatest neg-
ative stresses must occur at the endpoints of the model domain — at x = −L/2 and x = +L/2.

Problem 10 (Broken plate flexure)

Blue: V0 = −1.5 × 1012 N/m and M0 = −5.0 × 1017 N. Purple: V0 = 0 N/m and M0 =
−5.0× 1017 N. Yellow: V0 = −1.5× 1012 N/m and M0 = 0 N.
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The flexural response depends upon the flexural rigidity D of the plate which scales as the
cube(!) of the elastic plate thickness. In other words: A modest change to Te greatly changes
the flexural response of the plate.



Problem 11 (Adding topography)
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We cannot use the shape of the Ganges Foredeep Basin (circled in green) to study slab-pull
on the subducting Indian Plate. This is because the flexural response of the plate around the
Foredeep Basin looks the same with or without loading at x = 0. Thus topography alone
controls the shape of the Basin — at least for the case at hand.


