Lecture 5

 PHYC I6I Fall 2016
Ch. 19 First Law of Thermodynamics

- In a thermodynamic process, changes occur in the state of the system.
- Careful of signs!
- Q is positive when heat flows into a system.
- W is the work done by the system, so it is positive for expansion.

Work done during volume changes

- The infinitesimal work done by the system during the small expansion $d x$ is $d W=p A d x$.

- In a finite change of volume from V_{1} to V_{2} :

Force that system exerts on piston

$$
\begin{array}{ll}
\begin{array}{l}
\text { Work done in a } \cdots \cdots \cdots \cdots \\
\text { volume change }
\end{array} \int_{V_{1} \ldots \ldots \ldots . .}^{V_{2}{ }^{\text {k......... }} \text { Upper limit }=\text { final volume }} \begin{array}{l}
\text { Integral of the pressure } \\
\text { with respect to volume }
\end{array} \\
\text { Lowit }=\text { initial volume }
\end{array}
$$

Work on a pV-diagram

- The work done equals the area under the curve on a $p V$-diagram.
- Shown in the graph is a system undergoing an expansion with varying pressure.

Work on a pV-diagram

- Shown in the graph is a system undergoing a compression with varying pressure.
- In this case the work is negative.

First law of thermodynamics

- The change in the internal energy U of a system is equal to the heat added minus the work done by the system:

Internal energy change of thermodynamic system

First law of thermodynamics:

$$
\Delta U=Q-W
$$

- The first law of thermodynamics is just a generalization of the conservation of energy.
- Both Q and W depend on the path chosen between states, but ΔU is independent of the path.
- If the changes are infinitesimal, we write the first law as $d U=d Q-d W$.

First law of thermodynamics

- In a thermodynamic process, the internal energy U of a system may increase.
- In the system shown below, more heat is added to the system than the system does work.
- So the internal energy of the system increases.

Surroundings (environment)

$$
Q=150 \mathrm{~J} \quad W=100 \mathrm{~J}
$$

System

$$
\Delta U=Q-W=+50 \mathrm{~J}
$$

First law of thermodynamics

- In a thermodynamic process, the internal energy U of a system may decrease.
- In the system shown below, more heat flows out of the system than work is done.
- So the internal energy of the system decreases.

Surroundings (environment)

$$
Q=-150 \mathrm{~J} \quad W=-100 \mathrm{~J}
$$

System

$$
\Delta U=Q-W=-50 \mathrm{~J}
$$

First law of thermodynamics

- In a thermodynamic process, the internal energy U of a system may remain the same.
- In the system shown below, the heat added to the system equals the work done by the system.
- So the internal energy of the system is unchanged.

Surroundings (environment)

System

$$
\Delta U=Q-W=0
$$

Four kinds of thermodynamic processes

- There are four specific kinds of thermodynamic processes that occur often in practical situations:
- Adiabatic: No heat is transferred into or out of the system, so Q $=0$. Also, $U_{2}-U_{1}=-W$.
- Isochoric: The volume remains constant, so $W=0$.
- Isobaric: The pressure remains constant, so $W=p\left(V_{2}-V_{1}\right)$.
- Isothermal: The temperature remains constant.

The four processes on a pV-diagram

- Shown are the paths on a $p V$-diagram for all four different processes for a constant amount of an ideal gas, all starting at state a.

Internal energy of an ideal gas

- The internal energy of an ideal gas depends only on its temperature, not on its pressure or volume.
- The temperature of an ideal gas does not change during a free expansion.

Heat capacities of an ideal gas

- C_{V} is the molar heat capacity at constant volume.
- To measure C_{V}, we raise the temperature of an ideal gas in a rigid container with constant volume, ignoring its thermal expansion.

Constant volume: $d Q=n C_{V} d T$

Heat capacities of an ideal gas

- C_{p} is the molar heat capacity at constant pressure.
- To measure C_{p}, we let the gas expand just enough to keep the pressure constant as the temperature rises.

Constant pressure: $d Q=n C_{p} d T$

Relating C_{p} and C_{V} for an ideal gas

- To produce the same temperature change, more heat is required at constant pressure than at constant volume since ΔU is the same in both cases.
- This means that $C_{p}>C_{V}$.
- $C_{p}=C_{V}+R$.
- R is the gas constant $R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$.

The ratio of heat capacities

- The ratio of heat capacities is:

- For monatomic ideal gases,
- For diatomic ideal gases,

$$
\gamma=1.67 .
$$

$$
\gamma=1.40 .
$$

Adiabatic processes for an ideal gas

- In an adiabatic process, no heat is transferred in or out of the gas, so $Q=0$.
- Shown is a $p V$-diagram for an adiabatic expansion.
- As the gas expands, it does positive work W on its environment, so its internal energy decreases, and its temperature drops.

- Note that an adiabatic curve at any point is always steeper than an isotherm at that point.

Expansion of a gas

- Adiabiatic: No heat is added or removed during the expansion.
- Isobaric: The pressure remains constant during the expansion.
- Isothermal: The temperature remains constant during the expansion.

Clicker question

- You have 10 moles of a monatomic gas, with an initial volume V_{i}. You then compress the gas to half the initial volume in two ways:
- A. ISOTHERMAL compression
- B. ADIABATIC compression
- Q : In which process, A or B , is the final pressure of the gas higher?

