Lecture 4

PHYC I6| Fall 2016

Equations of state and the ideal-gas law

- Quantities such as pressure, volume, temperature, and the amount of a substance are state variables because they describe the state of the substance.
- The equation of state relates the state variables.
- The ideal-gas equation is an equation of state for an ideal gas:

> Ideal-gas equation:

$$
\begin{array}{ll}
\text { Gas pressure } \\
\text { Gas volume } & \text { Number of moles of gas } \\
\text { Absolute temperature of gas }
\end{array}
$$

- The molar mass \boldsymbol{M} (molecular weight) is the mass per mole. The total mass of n moles is $m_{\text {total }}=n M$.

Moles and Avogadro's number

- One mole of a substance contains as many elementary entities (atoms or molecules) as there are atoms in 0.012 kg of carbon-12.
- One mole of a substance contains Avogadro's number N_{A} of molecules.
- $N_{\mathrm{A}}=6.022 \times 10^{23}$ molecules $/ \mathrm{mol}$
- The molar mass \boldsymbol{M} is the mass of one mole.

$$
\begin{aligned}
& \text { Molar mass } \\
& \text { of a substance }
\end{aligned} \quad{ }^{\text {M }} M=N_{\mathrm{A}}^{m} \begin{aligned}
& \text { Avogadro's number } \\
& \text { Mass of a molecule of substance }
\end{aligned}
$$

- When the molecule consists of a single atom, the term atomic mass is often used instead of molar mass.

Introduction

- The ideal-gas equation $p V=n R T$ gives a good description of the air inside an inflated vehicle tire, where the pressure is about 3 atmospheres and the temperature is much too high for nitrogen or oxygen to liquefy.
- As the tire warms (T increases), the volume V changes only slightly but the pressure p increases.

Q18.1

A quantity of an ideal gas is contained in a balloon. Initially the gas temperature is $27^{\circ} \mathrm{C}$. You double the pressure on the balloon and change the temperature so that the balloon shrinks to one-quarter of its original volume. What is the new temperature of the gas?
A. $54^{\circ} \mathrm{C}$

- $p V=n R T$
B. $27^{\circ} \mathrm{C}$
C. $13.5^{\circ} \mathrm{C}$
D. $-123^{\circ} \mathrm{C}$
E. $-198^{\circ} \mathrm{C}$

pV-diagrams

- These show isotherms, or constant-temperature curves, for a constant amount of an ideal gas.

Each curve represents pressure as a function of volume for an ideal gas at a single temperature.

Q18.2

This p - V diagram shows three possible states of a certain amount of an ideal gas. Which state is at the highest temperature?
A. state \#1
B. state \#2

C. state \#3
D. Two of these are tied for highest temperature.
E. All three of these are at the same temperature.

pV-diagrams

- A $p V$-diagram for a nonideal gas shows isotherms for temperatures above and below the critical temperature T_{c}.
- At still lower temperatures the material might undergo phase transitions from liquid to solid or from gas to solid.

Phases of matter

- For an ideal gas we ignore the interactions between molecules.
- But those interactions are what makes matter condense into the liquid and solid phases under some conditions.
- Each phase is stable in only certain ranges of temperature and pressure.
- A transition from one phase to another ordinarily requires phase equilibrium between the two phases, and for a given pressure this occurs at only one specific temperature.
- We can represent these conditions on a graph with axes p and T, called a phase diagram. (See next slide.)
- Each point on the diagram represents a pair of values of p and T.

A typical $p T$ phase diagram

