Lecture 3

 PHYC I6| Fall 2016
Phase changes

- The phases (or states) of matter are solid, liquid, and gas.
- A phase change is a transition from one phase to another.
- The temperature does not change during a phase change.
- The latent heat, L, is the heat per unit mass that is transferred in a phase change.

$$
\begin{aligned}
& \text { Heat transfer in } \cdots \cdots \cdots \cdot \alpha \\
& \text { a phase change } Q= \pm m L^{* \cdots \cdots} \text { Latent heat for this phase change }
\end{aligned}
$$

Heat added to ice at a constant rate

Phase of water changes. During these periods, temperature stays
constant and the phase change proceeds as heat is added: $Q=+m L$.

Temperature of water changes. During these periods, temperature
rises as heat is added: $Q=m c \Delta T$.

Heat of fusion

- The metal gallium, shown here melting in a person's hand, is one of the few elements that melts at room temperature.
- Its melting temperature is $29.8^{\circ} \mathrm{C}$, and its heat of fusion is $L_{\mathrm{f}}=8.04 \times 10^{4} \mathrm{~J} / \mathrm{kg}$.

Heat of vaporization

- The water may be warm and it may be a hot day, but these children will feel cold when they first step out of the swimming pool.
- That's because as water evaporates from their skin, it removes the heat of vaporization from their bodies.
- To stay warm, they will need to dry off immediately.

Q17.6

A pitcher contains 0.50 kg of liquid water at $0^{\circ} \mathrm{C}$ and 0.50 kg of ice at $0^{\circ} \mathrm{C}$. You let heat flow into the pitcher until there is 0.75 kg of liquid water and 0.25 kg of ice. During this process, the temperature of the ice-water mixture
A. increases slightly.
B. decreases slightly.
C. first increases slightly, then decreases slightly.
D. remains the same.

E . The answer depends on the rate at which heat flows.

Mechanisms of heat transfer

- In nature, energy naturally flows from higher temperature objects to lower temperature objects; this is called heat transfer.
- The three mechanisms of heat transfer are conduction, convection, and radiation.
- Conduction occurs within a body or between two bodies in contact.
- Convection depends on motion of mass from one region of space to another.
- Radiation is heat transfer by electromagnetic radiation, such as sunshine, with no need for matter to be present in the space between bodies.

Conduction of heat

- In conduction, heat flows from a higher to a lower temperature.
- Consider a solid rod of conducting material with crosssectional area A and length L.
- The left end of the rod is kept at a temperature T_{H} and the right end at a lower temperature T_{C}.

- The rate that heat is transferred is:

Rate of heat flow Temperatures of hot and cold ends of rod

Thermal conductivity of rod material \ddots_{ℓ} Cross-sectional area of rod

Q17.7

A chair has a wooden seat but metal legs. The chair legs feel colder to the touch than does the seat. Why is this?
A. The metal is at a lower temperature than the wood.
B. The metal has a higher specific heat than the wood.
C. The metal has a lower specific heat than the wood.
D. The metal has a higher thermal conductivity than the wood.
E. The metal has a lower thermal conductivity than the wood.

Equations of state and the ideal-gas law

- Quantities such as pressure, volume, temperature, and the amount of a substance are state variables because they describe the state of the substance.
- The equation of state relates the state variables.
- The ideal-gas equation is an equation of state for an ideal gas:

> Ideal-gas equation:

$$
\begin{array}{ll}
\text { Gas pressure } \\
\text { Gas volume } & \text { Number of moles of gas } \\
\text { Absolute temperature of gas }
\end{array}
$$

- The molar mass \boldsymbol{M} (molecular weight) is the mass per mole. The total mass of n moles is $m_{\text {total }}=n M$.

Introduction

- The ideal-gas equation $p V=n R T$ gives a good description of the air inside an inflated vehicle tire, where the pressure is about 3 atmospheres and the temperature is much too high for nitrogen or oxygen to liquefy.
- As the tire warms (T increases), the volume V changes only slightly but the pressure p increases.

Q18.1

A quantity of an ideal gas is contained in a balloon. Initially the gas temperature is $27^{\circ} \mathrm{C}$. You double the pressure on the balloon and change the temperature so that the balloon shrinks to one-quarter of its original volume. What is the new temperature of the gas?
A. $54^{\circ} \mathrm{C}$

- $p V=n R T$
B. $27^{\circ} \mathrm{C}$
C. $13.5^{\circ} \mathrm{C}$
D. $-123^{\circ} \mathrm{C}$
E. $-198^{\circ} \mathrm{C}$

pV-diagrams

- These show isotherms, or constant-temperature curves, for a constant amount of an ideal gas.

Each curve represents pressure as a function of volume for an ideal gas at a single temperature.

Q18.2

This p - V diagram shows three possible states of a certain amount of an ideal gas. Which state is at the highest temperature?
A. state \#1
B. state \#2

C. state \#3
D. Two of these are tied for highest temperature.
E. All three of these are at the same temperature.

pV-diagrams

- A $p V$-diagram for a nonideal gas shows isotherms for temperatures above and below the critical temperature T_{c}.
- At still lower temperatures the material might undergo phase transitions from liquid to solid or from gas to solid.

Molecular properties of matter

- Figure 18.8 at the right shows how the force between molecules and their interaction potential energy depend on their separation r.
- Molecules in solids are essentially fixed in place, while those in liquids and gases have much more freedom to move.

Moles and Avogadro's number

- One mole of a substance contains as many elementary entities (atoms or molecules) as there are atoms in 0.012 kg of carbon-12.
- One mole of a substance contains Avogadro's number N_{A} of molecules.
- $N_{\mathrm{A}}=6.022 \times 10^{23}$ molecules $/ \mathrm{mol}$
- The molar mass \boldsymbol{M} is the mass of one mole.

$$
\begin{aligned}
& \text { Molar mass } \\
& \text { of a substance }
\end{aligned} \quad{ }^{\text {M }} M=N_{\mathrm{A}}^{m} \begin{aligned}
& \text { Avogadro's number } \\
& \text { Mass of a molecule of substance }
\end{aligned}
$$

- When the molecule consists of a single atom, the term atomic mass is often used instead of molar mass.

