Lecture 23
 PHYC I6| Fall 2016

Current

- A current is any motion of charge from one region to another.

Rate at which charge flows through area

Direction of current flow

- A current can be produced by positive or negative charge flow.
- Conventional current is treated as a flow of positive charges.
- In a metallic conductor, the moving charges are electrons but the current still points in the direction positive charges would flow.

Current density

- We can define a vector current density that includes the direction of the drift velocity:

$$
\begin{aligned}
& \text { Vector current density } \overrightarrow{\boldsymbol{J}}=n q \overrightarrow{\boldsymbol{v}}_{\mathrm{d}} \text { Drift velocity } \\
& \begin{array}{l}
\text { Concentration of } \\
\text { moving charged particles }
\end{array}
\end{aligned}
$$

- The vector current density is always in the same direction as the electric field, no matter what the signs of the charge carriers are.

Resistivity

- The resistivity of a material is the ratio of the electric field in the material to the current density it causes:

$$
\begin{aligned}
& \text { Resistivity } \\
& \text { of a material }
\end{aligned} \rho=\frac{E^{\swarrow}}{J^{\swarrow}} \begin{aligned}
& \text { Magnitude of electric field } \\
& \text { in material }
\end{aligned}
$$

- The conductivity is the reciprocal of the resistivity.
- The next slide shows the resistivity of various types of materials.

Resistivities at room temperature $\left(20^{\circ} \mathrm{C}\right)$

Conductors	Substance	$\boldsymbol{\rho}(\boldsymbol{\Omega} \cdot \mathbf{m})$
Copper	1.72×10^{-8}	
Gold	2.44×10^{-8}	
Lead	22×10^{-8}	

Semiconductor: Pure carbon (graphite)
3.5×10^{-5}

$10^{10}-10^{14}$
$>10^{13}$
$10^{8}-10^{11}$

Q25.1

Two copper wires of different diameter are joined end to end, and a current flows in the wire combination. When electrons move from the larger-diameter wire into the smaller-diameter wire,
A. their drift speed increases.
B. their drift speed decreases.
C. their drift speed stays the same.
D. either A or B is possible, depending on circumstances.
E. any of A, B, or C is possible, depending on circumstances.

Conductors | Substance | $\rho(\Omega \cdot \mathrm{m})$ |
| :--- | :--- |
| 个 Copper | 1.72×10^{-8} |
| Gold | 2.44×10^{-8} |
| Lead | 22×10^{-8} |

Semiconductor: Pure carbon (graphite) 3.5×10^{-5}

Caveats

- The resistivity of materials in general depends on temperature.
- Not all materials are ohmic.
(b)

Semiconductor diode: a nonohmic resistor

flows.
© 2012 Pearson Education, Inc.
(a)

(b)

(c)

Resistance and Ohm's law

- The resistance of a conductor is $R=\rho L / A$.
- The potential across a conductor is given by Ohm's law: $V=I R$.

Potential changes

- The figure shows how the potential varies as we go around a complete circuit.
- The potential rises when the current goes through a battery, and drops when it goes through a resistor.
- Going all the way around the loop brings the potential back to where it started.

Q25.3

A source of emf is connected by wires to a resistor, and electrons flow in the circuit. The wire diameter is the same throughout the circuit. Compared to the potential energy of an electron before entering the resistor, the potential energy of an electron after leaving the resistor is
A. greater.
B. less.
C. the same.
D. either A or B depending on circumstances.
E. any of A, B, or C depending on circumstances.

Internal resistance

- Real sources of emf actually contain some internal resistance r.
- The terminal voltage of the $12-\mathrm{V}$ battery shown at the right is less than 12 V when it is connected to the light bulb.

Terminal voltage, \cdots emf of source \quad Current through source source with $\quad V_{a b}={ }^{\wedge} \mathcal{E}-I r^{2} \quad$ Internal resistance internal resistance of source

Table 25.4 - Symbols for circuit diagrams

Voltmeter (measures potential difference between its terminals)

Ammeter (measures current through it)

Energy and power in electric circuits

- The box represents a circuit element with potential difference $V_{a b}=V_{a}-V_{b}$ between its terminals and current I passing through it in the direction from a toward b.

Circuit element

- If the potential at a is lower than at b, then there is a net transfer of energy out of the circuit element.
- The time rate of energy transfer is power, denoted by P, so we write:

```
Power delivered to
or extracted from }\longrightarrowP=\mp@subsup{V}{ab}{}\mp@subsup{I}{<}{}\mathrm{ circuit element
a circuit element
    Voltage across
    Current in circuit element
```


Potential changes

- The figure shows how the potential varies as we go around a complete circuit.
- The potential rises when the current goes through a battery, and drops when it goes through a resistor.
- Going all the way around the loop brings the potential back to where it started.

When switch S in the figure (Figure 1) is open, the voltmeter V of the battery reads 3.13 V . When the switch is closed, the voltmeter reading drops to 2.95 V , and the ammeter A reads 1.70 A . Assume that the two meters are ideal, so they don't affect the circuit.

Find ε and r
Figure $1 \quad$ of 1

CPS 23-2

In diagram a, the ammeter reads 2 A and the voltmeter reads 8 V . What are the readings in diagram b ?
(a)

(b)

A. 2 A and 8 V .
B. 2A and $0 V$.
C. 0 A and 12 V .
D. OA and OV.
E. 2A and 12 V .

Exercise 25.33

The circuit shown in the figure (Figure 1) contains two batteries, each with an emf and an internal resistance, and two resistors.

Find the direction of the current?

What is the current, I?

Which brings us to resistor networks

7) The figure shows three identical light bulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness of light bulb 3 when the switch S is closed?

Series Resistors

- Since the current through each resistor is the same,

$$
\begin{aligned}
V_{a b} & =I R_{1}+I R_{2}+I R_{3} \\
& =I\left(R_{1}+R_{2}+R_{3}\right) \\
& =I R_{e q} \Rightarrow \\
R_{e q} & =R_{1}+R_{2}+R_{3}
\end{aligned}
$$

(c) 2012 Pearson Education, Inc.

Parallel Resistors

- For resistors in parallel, the voltage across each is the same, so,

$$
\begin{aligned}
& V_{a b}=I_{1} R_{1}=I_{2} R_{2}=I_{3} R_{3} \\
& \quad \text { and }
\end{aligned}
$$

$$
I=I_{1}+I_{2}+I_{3}
$$

$$
V_{a b}=I R_{e q} \Rightarrow
$$

$$
\frac{V_{a b}}{R_{e q}}=I=I_{1}+I_{2}+I_{3}
$$

$$
\frac{V_{a b}}{R_{e q}}=\frac{V_{a b}}{R_{1}}+\frac{V_{a b}}{R_{2}}+\frac{V_{a b}}{R_{3}} \Rightarrow
$$

$$
\leftarrow \underset{R}{\mathrm{~V}_{\mathrm{ab}} \longrightarrow} \quad \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

Mixed Resistors

(c) R_{1} in series with parallel combination of R_{2} and R_{3}

(c) 2012 Pearson Education, Inc.
(d) R_{1} in parallel with series combination of R_{2} and R_{3}

(c) 2012 Pearson Education, Inc.

Analysis Steps

- If you are asked to determine the current through and potentials across several resistors in a circuit, follow these steps:
(a)

(d)

(e)

(f)

Caution!

- Not all circuits can be analyzed in this way.
- In the diagram below, the resistors are neither in series or in parallel.
- We will develop another method for this analysis.

