Lecture 23 PHYC 161 Fall 2016

Current

• A **current** is any motion of charge from one region to another.

Direction of current flow

- A current can be produced by positive or negative charge flow.
- *Conventional current* is treated as a flow of positive charges.
- In a metallic conductor, the moving charges are electrons but the *current* still points in the direction positive charges would flow.

Current density

• We can define a *vector* current density that includes the direction of the drift velocity:

• The vector current density is always in the same direction as the electric field, no matter what the signs of the charge carriers are.

Resistivity

• The **resistivity** of a material is the ratio of the electric field in the material to the current density it causes:

- The *conductivity* is the reciprocal of the resistivity.
- The next slide shows the resistivity of various types of materials.

Resistivities at room temperature (20°C)

	Substance	$ ho ~(\Omega \cdot m)$
Conductors	Copper	1.72 ×10 ⁻⁸
	Gold	2.44 ×10 ⁻⁸
	Lead	22 ×10 ⁻⁸
Semiconductor:	Pure carbon (graphite)	3.5 ×10 ⁻⁵
Insulators	Glass	$10^{10} - 10^{14}$
	Teflon	>1013
	Wood	$10^8 - 10^{11}$

Two copper wires of different diameter are joined end to end, and a current flows in the wire combination. When electrons move from the larger-diameter wire into the smaller-diameter wire,

- A. their drift speed increases.
- B. their drift speed decreases.
- C. their drift speed stays the same.
- D. either A or B is possible, depending on circumstances.
- E. any of A, B, or C is possible, depending on circumstances.

Resistivities at room temperature (20°C)

· m)
2×10 ⁻⁸
4 ×10−8
2 ×10 ⁻⁸
5 ×10-5
-10^{14}
>1013
-10^{11}

Caveats

- The resistivity of materials in general depends on temperature.
- Not all materials are ohmic.

(b)

Semiconductor diode: a nonohmic resistor

0

Resistance and Ohm's law

- The *resistance* of a conductor is $R = \rho L/A$.
- The potential across a conductor is given by Ohm's law: V = IR.

Potential changes

- The figure shows how the potential varies as we go around a complete circuit.
- The potential rises when the current goes through a battery, and drops when it goes through a resistor.
- Going all the way around the loop brings the potential back to where it started.

Q25.3

A source of emf is connected by wires to a resistor, and electrons flow in the circuit. The wire diameter is the same throughout the circuit. Compared to the *potential energy of an electron* before entering the *resistor*, the *potential energy of an electron* after leaving the *resistor* is

A. greater.

B. less.

C. the same.

D. either A or B depending on circumstances.

E. any of A, B, or C depending on circumstances.

Internal resistance

- Real sources of emf actually contain some internal resistance r.
- The **terminal voltage** of the 12-V battery shown at the right is less than 12 V when it is connected to the light bulb.

Terminal voltage, source with internal resistance $V_{ab} = \mathcal{E} - Ir$ Internal resistance of source of source

Table 25.4 — Symbols for circuit diagrams

Conductor with negligible resistance

Resistor

+ E

Source of emf (longer vertical line always represents the positive terminal, usually the terminal with higher potential)

Source of emf with internal resistance r (r can be placed on either side)

or

_____A

Voltmeter (measures potential difference between its terminals)

Ammeter (measures current through it)

Energy and power in electric circuits

The box represents a circuit element with potential difference V_{ab} = V_a - V_b between its terminals and current *I* passing through it in the direction from *a* toward *b*.

- If the potential at *a* is lower than at *b*, then there is a net transfer of energy out of the circuit element.
- The time rate of energy transfer is power, denoted by P, so we write:

Power delivered to
or extracted from
$$P = V_{ab}I$$
, Voltage across
circuit element
circuit element
Current in circuit element

Potential changes

- The figure shows how the potential varies as we go around a complete circuit.
- The potential rises when the current goes through a battery, and drops when it goes through a resistor.
- Going all the way around the loop brings the potential back to where it started.

25.29

When switch S in the figure (Figure 1) is open, the voltmeter V of the battery reads 3.13 V. When the switch is closed, the voltmeter reading drops to 2.95 V, and the ammeter A reads 1.70 A. Assume that the two meters are ideal, so they don't affect the circuit.

Find \mathcal{E} and r

CPS 23-2

In diagram a, the ammeter reads 2A and the voltmeter reads 8V. What are the readings in diagram b? (a)

(b)

- A. 2A and 8V.
- B. 2A and 0V.
- C. 0A and 12V.
- D. 0A and 0V.
- E. 2A and 12V.

Find the direction of the current?

What is the current, I?

Which brings us to resistor networks

7) The figure shows three identical light bulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness of light bulb 3 when the switch S is closed?

Series Resistors

• Since the current through each resistor is the same,

$$V_{ab} = IR_1 + IR_2 + IR_3$$
$$= I(R_1 + R_2 + R_3)$$
$$= IR_{eq} \Longrightarrow$$
$$R_{eq} = R_1 + R_2 + R_3$$

Parallel Resistors

• For resistors in parallel, the voltage across each is the same, so,

© 2012 Pearson Education, Inc.

Mixed Resistors

(c) R_1 in series with parallel combination of R_2 and R_3

© 2012 Pearson Education, Inc.

(d) R_1 in parallel with series combination of R_2 and R_3

© 2012 Pearson Education, Inc.

Analysis Steps

 If you are asked to determine the current through and potentials across several resistors in a circuit, follow these steps:

Caution!

- Not all circuits can be analyzed in this way.
- In the diagram below, the resistors are neither in series or in parallel.
- We will develop another method for this analysis.

