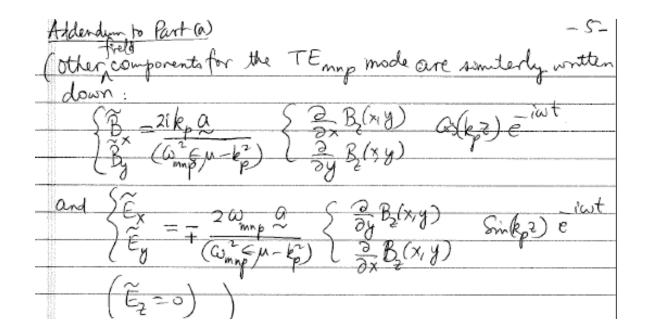
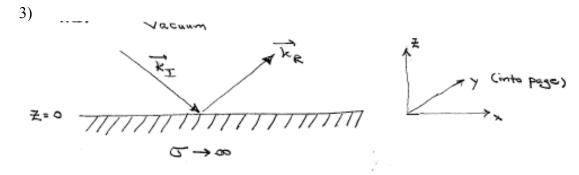

1)
1. (a) Unless the same x, y dependence holds for both
traveling components of a mode, the modefields will
not obey the required B.C.s at the cross-sectional
not obey the required B.C.s at the cross-sectional boundary. In other words, for a given TE (or TM) mode,
B = B(x,y) e k2-iwt + B(-) - i k2-iwt
D Z (x/q)e
cannot obey the BC obeyed by B(x,y) unless
cannot obey the BC obeyed by B(+)(x,y) unless B(x,y) is simply proportional to bit so the (x,y) dependent
factorizes from the (2,+) dependences, that would require
factorizes from the (2,+) dependences. That would require $k^{(+)}$ and $k^{(-)}$ to have the same magnitude, $k^{(+)^2} = k^{(-)^2} = k^2$,
Since $\left(\nabla_{T}^{2} + k_{\pm}^{2} - \omega^{2} \in \mu\right) \mathcal{B}^{(\pm)}(x,y) = 0$
and $B_{2}^{(c)} \propto B^{(+)}$
(b) The most general polition is what's written above
for B and can similarly be written for the remaining EM field components, re, since B & B,
EM reld components 12, since D & D
By = B(x,y) (a e k + b e k) = iwt
2 2 C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
a, b : arbitrary constants of Superposition
To write down the other components of the EM fields,
we use the same superposition coefficients a f b. Thus,
~(+)
$\mathcal{B} = \frac{\lambda k}{2} \left(\frac{\partial}{\partial x} \mathcal{B}(x,y) \right) e^{-kx}$
(w=u-k2) 0x = ik7-iv+
and B= -ik 2B(xy) e (k -> -k) (02 EM-k2) DX Z (k + -w) in the previous expression)
X (QEM-K2) DX 2





2)

(a) TE made of the resonant carity
From the expressions derived in the previous problem, and the requirement that B, which is the normal component of B on the end plates, must vanish there, we have
and the requirement that B which is the normal component
of B on the end plates, must vanish there, we have
B ₂ / ₂₌₀ = B ₂ (_{2=d} =0
$\Rightarrow 6+b=0, ae^{ikd}+be^{ikd}=0$ $\Rightarrow [b=-a], \delta 0 a(e^{ikd}-e^{ikd})=0$
11 2 22 22 24 2
$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{$
Thus, $B_2 = 2iaB_2(x, y)$ Sin $(\frac{p\pi_2}{a})$ $e^{i\omega_{mnp}t}$, where $\omega_{mp} \in \mathcal{A}$ $= \frac{1}{2} + \frac{m\pi_2}{a^2} + m\pi_2^2$

B.C.: tangendral E continuous at 200. Since

round component

of E is a and

thus continuous

across boundary,

thus implying that

thore is no surface

The waves must interfore

thore is no surface

thore is no surface

The waves must interfore

The wav

Take real part:

Ez &, 2E, sin kzz sin (kxx-wt)

(b) Total magnetic field

Method 1: Usc Foreday's law

+
$$\frac{\partial \vec{B}}{\partial t} = -\nabla_{x} \vec{E} = + \frac{\partial \vec{E}_{y}}{\partial z} \hat{e}_{x} - \frac{\partial \vec{E}_{y}}{\partial x} \hat{e}_{z}$$

The base only a y composed

Integrate urt t: to following, but that wouldn't be a wave

Method 2: Usc magnetic Helds for meident and

reflected maves.

Take real part:

$$\vec{B} = \hat{c}_{\pm} \frac{k_x}{\omega} \ge E_0 s_m k_z = s_{in}(k_x - \omega t)$$

$$+ \hat{c}_x \frac{k_z}{\omega} \ge E_0 cos k_z = cos(k_x - \omega t)$$

BC's on B:

O Normal component of B continuous at zeo. Since Bero inside conductor, we have

 $O = \hat{c}_z - \hat{B}|_{z=0} = B_z|_{z=0}$ Notes and because $Smk_z z=0$ and z=0

@ Tangential component of B' sudisties

Bit | Z=0+ - Bit | Z=0- = Jao Ri Axt

just above just bolow

£=&y: 0= By = uo R. êzxêy=- m. Kx

f=êx: Kz zEochs(hx-wt)= Bx | z=o+= No R. êzxêx=No Ky

R= &, kz = Eo cos(kx-wt)

(c) 3: LEXB

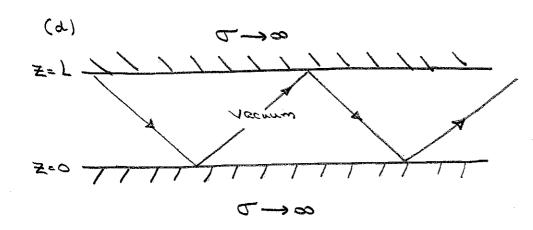
Method 1: B. I (E, 2E, SM hz & SM (hxx-wt))

 $\times \left(\hat{e}_{z} \frac{k_{x}}{\omega} \geq E_{o} \sin k_{z} + \sin (k_{x} x - \omega t)\right)$

+ & k = 2 E = cos (kxx - wt))

S= kx + E2 Sm2 kz = Sm2 (kxx - wt) &xez &x - &z -

Use Now take the time average.


(Sm2(kx-wt)) = = =

(sm(kx-wt) cos(kx-wt)) = = (sm(zkx-zwt)) = 0

= (-iê, 2E, smkzz) x (tiê, kx 2E, smkzz + & KE ZES COS KEZ)

= &x hx +E2 Sin2 kz + L2 + L2 + E2 Sinkz coshzz

(5) = kx 2E2 Sm2 kz Z ex

The boundary conditions say that the tangential electric Acid must variet at ZeL.

 \Rightarrow $Smh_{2}L=0 \Rightarrow k_{2}L=n\pi$, n=1,2,3,...

Negative motogers just change the sign of E, so they're no different from positive motogers;
was given no field, so it dreams count.

(c) Dispersion reliation
$$\omega = ck = c\sqrt{k_x^2 + k_z^2} = \left| c\left(k_x^2 + (n\pi/L)^2\right)^2 = \omega$$

Smallest frequency we can have is for kx=0 and n=1, which gues w= CTI/L = we wast. For w < w cutoff, TE modes cannot propagate down the guide.

Phase velocity

Group Velocity:

$$\lambda d = \frac{qy}{qy} = C \frac{\sqrt{\left(\frac{x^2 + (2 \pm |\Gamma|_5)}{5}\right)_{15}}}{\sqrt{\left(\frac{x^2 + (2 \pm |\Gamma|_5)}{5}\right)_{15}}} = \frac{\left(\sqrt{1 + (2 \pm |\Gamma|_5)}\right)_{15}}{C}$$

(a) The second of the secon

(b) Same idea - we want
$$\nabla \cdot \vec{A}' + \frac{1}{c^2} \frac{\partial V'}{\partial t} = 0$$

$$\vec{\nabla} \cdot \vec{A}' = \vec{\nabla} \cdot \vec{A} + \nabla^2 \chi$$

$$\vec{c}^2 \frac{\partial V'}{\partial t} = \vec{c}^2 \frac{\partial V}{\partial t} - \vec{c}^2 \frac{\partial^2 \chi}{\partial t^2}$$

$$\vec{\nabla} \cdot \vec{A}' + \frac{1}{c^2} \frac{\partial V'}{\partial t} = 0$$

$$\Rightarrow \vec{\nabla} \cdot \vec{A} + \nabla^2 \chi + \frac{1}{c^2} \frac{\partial V}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \chi}{\partial t^2} = 0$$
Differential equation satisfied by χ

$$(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) \chi(\vec{r}, t) = -(\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial V}{\partial t})$$
Remarks function

We know the solution to equations of this form:
$$\vec{E}(\text{cample} \cdot (\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) V(\vec{r}, t) = -\vec{p} \cdot \vec{e}_0$$

$$\Rightarrow V(\vec{r}, t) = \frac{1}{4\pi} \int \frac{\vec{p}(\vec{r}, t, t + t) \cdot \vec{e}_0}{|\vec{r} - \vec{r}'|} dt'$$
Thus the scalar field which we need is
$$\chi(\vec{r}, t) = \frac{1}{4\pi} \int \frac{dt'}{|\vec{r} - \vec{r}'|} (\vec{\nabla} \cdot \vec{A}(\vec{r}, t_{ret}) + \frac{1}{c^2} \frac{\partial V}{\partial t}(\vec{r}, t_{ret}))$$

$$tret = t - \frac{|\vec{r} - \vec{r}'|}{t}$$