HW#7 solutions

30% of this HW is extra credit, but try some parts of each problem!

1.
Plane-polarised EM wave incident
normally on flat surface of non-permiable
medium of conductivity of & permittivity €.
Show that for a good conductor, the
Plane-polarised EM wave incident normally on flat surface of non-permiable medium of conductivity of a permittivity &. Show that for a good conductor, the power reflection coeff is approximately
$R \approx 1 - 2\omega \delta$; where $\delta \equiv skin depte$
Normal incidence:
$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 ; \mu_1 = \mu_2 = \mu_0$
We take $n_1 = 1$ and $\tilde{n}_2 = \frac{\tilde{k}}{(\omega/c)} = \frac{k(1+i)}{(\omega/c)}$ $\tilde{n}_2 = \frac{\mu_0 \sigma_W}{2} (1+i)$ $\frac{1}{\omega/c} = \frac{1}{\omega/c} \frac{1}{(1+i)}$
$= c \left \frac{\mu_0 \tau}{2 \omega} \left(1 + i \right) \right $
For a good conductor T is large and nzis large. So expand R in power of n. /nz:
$R = \left \left(\frac{n_1 - n_2}{n_1 + n_2} \right) \right ^2 \approx \left \frac{1 - n_1 / n_2}{1 + n_1 / n_2} \right ^2$

Take
$$x = 2n_1/n_2 + \cdots$$

Take $x = 2n_1/n_2 + \cdots$

Taylor expand about $x = 0$:

$$f(x) \approx f(0) + f'(x) | x + \cdots | x = 0$$

$$\approx 1 + \left[-\frac{1}{1 + x} - \frac{1 + x}{1 + x} \right] | x = 0$$

$$\approx 1 + \left[-\frac{1 - x - 1 + x}{1 + x} \right] | x \approx 1 - 2x$$

$$(1 + x)^2 | x = 0$$

$$\Rightarrow \left[\frac{1 - 2n_1/n_2}{1 + 2n_1/n_2} \right] \approx \left[\frac{1 - 4n_1}{n_2} \right]$$

$$\approx \left[\frac{1 - 4n_1/n_2}{1 + 2n_1/n_2} \right] | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{1 - 4n_1}{n_2} | x = 0$$

$$\Rightarrow \lim_{x \to \infty}$$

$$7 + i\beta$$

$$7 = 1 - 2\delta\omega + 2i\delta\omega + ...$$

$$7 = \left(1 - 2\delta\omega\right)^{2} + \left(2\delta\omega\right)^{2}$$

$$7 = \left(1 - 4\delta\omega + 16\left(\delta\omega\right)^{2}\right)^{2} = \left(1 + x\right)^{2}$$

$$8 = 1 + \frac{1}{2}x \approx 1 + \frac{1}{2}\left(-4\delta\omega + 16\left(\delta\omega\right)^{2}\right)$$

$$1 = 1 - 2\delta\omega + \delta\left(\delta\omega\right)^{2}$$

$$2 = 1 - 2\delta\omega + \delta\left(\delta\omega\right)^{2}$$

- 2. see # 4, they were identical
- 3. Silver as a conductor:

Solver as a conductor

D.C. conductivity
$$\sigma = 6.17 \times 10^{+7} / \Omega \text{ m}$$

Ag: Discharge (set STP) ~ 10.5 $3/\text{cm}^3 = 10^4 \frac{13}{2} \text{m}^3 = \rho_N$

Volence electrons: 1

Thumber density = $N_e = \rho_M = 0.5 \text{ mass}$ Ag.

Homic wight Ag: 108 amu , 1 amu = mass of probin = $1.7 \times 10^{-27} \text{ kg}$
 $\Rightarrow M_{\text{ag}} = 1.93 \times 10^{-25} \text{ kg}$
 $\therefore N = (10^4 \frac{\text{kg}}{\text{m}^3}) (1.83 \times 10^{-25} \text{ kg}) = 5.5 \times 10^{28} \text{ m}^{-3}$

The D.C. conductivity $\sigma = \frac{1}{10^{2}} \frac{10^{2}}{\text{m}^2} \frac{10^{2}}{\text{m}^$

(b) In the Drude model, the conductivity is
$$\mathcal{S}(\omega) = \frac{\int Ne^2 m}{8 - i\omega} = \frac{\sigma_0}{1 - i\frac{\omega}{8}}$$

For frequencies large compared to the collision rate $\omega >> 1$ the conductivity become imaginary and the metal looks like a plasma $\widetilde{\sigma}(\omega) \approx i \, \widetilde{\sigma} \widetilde{\sigma} = i \, \widetilde{\omega} \widetilde{\sigma} \, \widetilde{\varepsilon}_0$

The general complex index of refraction is $\Re(\omega) = \frac{C}{\omega} \hat{k} = \frac{C}{\omega} \int_{U_0 \in_{o}} \omega^2 + i \omega \partial_{\mu} \omega \qquad (5 \circ 6_{o}, u = \mu_o)$ $\Rightarrow \Re(\omega) = \sqrt{1 + i \frac{G(\omega)}{\omega \in_{o}}}$

Typical microwave frequency: 5×10¹⁰ Hz = D

ω = 3.1×10¹¹ s⁻¹ << δ

σ(ω) ≈ σο. Furthermore ωE₀ ≥>1 (Excellent)

conductor)

Typical visible frequency: $D = 5 \times 10^{44} Hz$ $W = 3.1 \times 10^{15} s^{-1} >> 7$ $\Rightarrow \mathcal{F}(\omega) \approx i \omega_{0}^{2} \epsilon_{0} \Rightarrow \mathcal{F}(\omega) \approx \sqrt{1 - \omega_{0}^{2}}$ Plasma lopersion

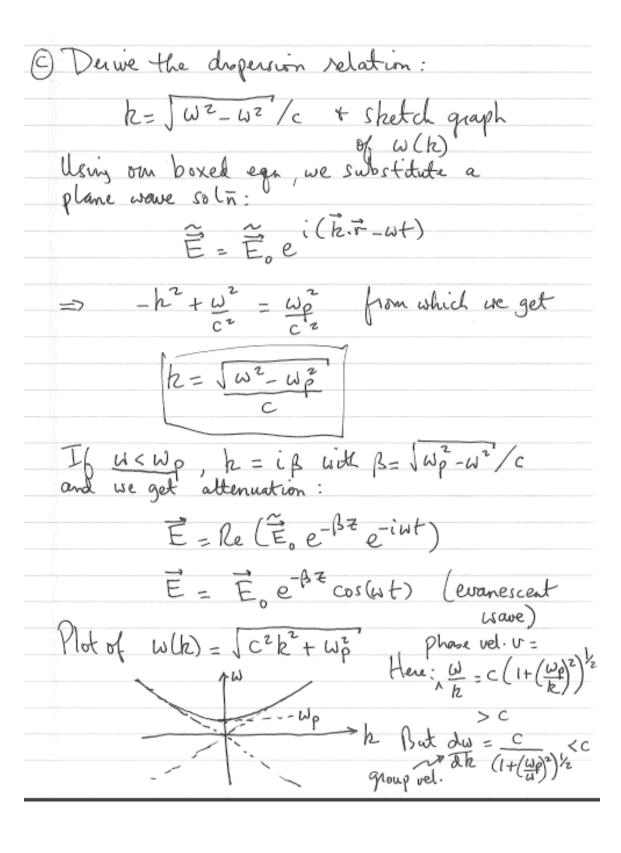
Since $\omega < \omega_{0}$, below cuttoff $\Rightarrow \widetilde{\mathcal{F}}(\omega) = i \sqrt{\omega_{0}^{2} - 1} = 4i$

· Typical X-ray frequency D=5x1d8 Hz => W= 3.1x10 5-1 >> 8 Õ(ω) ≈ i ω² ε => ñ(ω) ≈ JI - ω² Plaxme Since wp << w this plasme is excited well above cutoff → ñω ≈ [-½(±) = 1-8.8×10-8 So at X-ray frequencies this simple model says that Silver is essentially transparent. Of course there are lots of other effects we have neglected such as absorption by bound electrons and Bragg-scattering (c) At a radio frequency y = 1 MHz $\omega = 62 \times 10^{7} \text{ s}^{-1} << 8 \quad \text{and} \quad \frac{\sqrt{5}}{\omega \epsilon_{0}} >> 1 \quad \text{(Good London)}$ > 0 (w) ≈ 00 ñ(w) ≈ Joo (1+i) Sken depth (distance field decays to /e) $d = \frac{1}{k_{\pm}} = \frac{1}{\omega} \underbrace{n_i(\omega)}_{c} = \frac{1}{\sqrt{\omega} u_0 v_0} = 6 \times 10^{-5} \text{m} = 60 \text{ µm}$

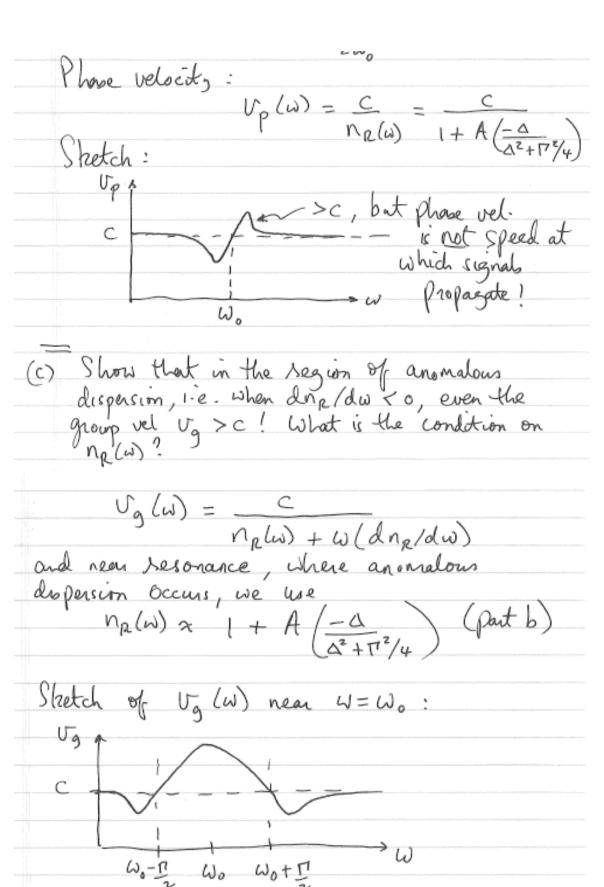
4. Waves in Plasmas:

Waver in Plasmas. Neutral plasma with electron denistry Ne. At high v's 10 is are very heavy of can be considered fixed; e's carry current.

(a) Using Maxwell's Egns derive the wave egn $\left(\nabla^{2} - \frac{1}{C^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \stackrel{\sim}{E} = M_{0} \frac{\partial \vec{J}}{\partial L}$ For our case of a neutral plasma we have S=0 (no net change) $S=S_e\vec{v}_e=N_ee\vec{v}_e$; current is carried by e's. ⇒ Q. E = 0 \$\vec{1}{2} \vec{1}{2} \vec{1}{2 > V×(V×E)=V(D/E)-VE =-2 V×B - \(\varphi \) \(\varphi \) = - \(\mu_0 \) \(\frac{\partial}{2+} \) = \(\mu_0 \) \(\tau_0 \) \(\frac{\partial}{2+} \) $\Rightarrow \nabla^2 - \frac{1}{C^2 \partial t^2} = \mu_0 \partial J$ (b) Monochromatic plane wave $\vec{E} = Re [\vec{E}e^{-i\omega t}]$ and ignoring collisions between e's, show that



5)	_
	Anomalous Dispersion in Dielectrics. Group bel in an absorptive dielectric dispersive medium: $V_g = \frac{1}{dk_E(\omega)}$; $k_E(\omega) = real part$ of wave #.
(a)	Show that $v_g(\omega) = \frac{c}{n_R(\omega) + \omega \left(dn_R/d\omega \right)}$
	Use:
	For a single sesonance in the Laneutz Model we found $N_{R}(\omega) = 1 + \frac{\omega_{P}^{2}(\omega_{0}^{2} - \omega^{2})}{(\omega_{0}^{2} - \omega^{2})^{2} + \omega^{2}T^{2}}$
	on, near resonance: $N_{R}(\omega) \approx 1 + A \left(\frac{-\Delta}{\Delta^{2} + \Gamma^{2}/4}\right)$ with $\Delta = \omega - \omega_{0}$ and $A = \frac{\omega_{p}^{2}}{2\omega_{0}}$



The By Negion within Wo-I' < W < Wo+ I' is within the absorption line. 2 References 2 for further regality on this: o. L. Brillouin, "Wave Propagation & Group Velocits (Academic Press, NY, 1952) o R.Y. Chiao et al., Proc. of the Conference, "Fundament Problems in Quantum Theory" (Ann. NY Acad. Si 19		Condition for Uz>c is simply:
The By Negion within Wo-I? < W < Wo + 17 is within the absorption line. References for further regality on this: o. L. Brillouin, "Wave Propagation + Group Velocits (Academic Press, NY, 1952) o R.Y. Chiao et al., Proc. of the Conference," Fundavier		nR(W) + wdnR < 1
10 1. Chinas of an . 1 toc. of me conference, I amondo		
10 1. Chinas of an . 1 toc. of me conference, I amondo		The By segion within Wo-I' < W < W0 + 17
10 1. Chinas of an . 1 toc. of me conference, I amondo		is within the absorption line. 2 References for
10 1. China ci av. 1 10c. all me conflerence, I umadres	4	Gurlha regaling on this:
10 1. Chinas of an . 1 doc. all we conflictence, I amondo		. L. Brillouin, "Wave Propagation & Group Velocity
10 1. Chinas of an . 1 doc. all we conflictence, I amondo		(Academic Press, NY, 1952)
Peopleme in Quartum Theory" (Ang. NY Acal Sci 19		· R.Y. Chiao et al. Proc. of the Conference. "Fundament
		Problems in Quantum Theory" (Ann. NY Acad Sci 199