1) Some mathematical review of material that will be useful this semester.
a) Consider a closed volume \bar{V}

The amount of " Q " inside V changes because Q Hows in or out of volume or is created/destroyed

Where S is the surface bounding \bar{V}
Now, according to the divergence theorem

$$
\int_{S} \vec{F} \cdot \hat{x} d a=\int_{V} \vec{\nabla} \cdot \frac{J}{V} d^{3} r
$$

and if P is the local density of Q

$$
\begin{aligned}
& Q=\int \rho d^{3} r \\
& \Rightarrow \frac{d}{d t} \int \rho d^{3} r=-\int\left(\nabla_{V}, \vec{J}\right) d^{3} r+\int_{V} R d^{3} r
\end{aligned}
$$

$$
\Rightarrow\left[\frac{\partial p}{\partial t}=-\vec{\nabla} \cdot \vec{J}+R\right] \text { This sa local } \text { conservation law }
$$ conservation law at any point \vec{r}

$$
\begin{aligned}
& \left.\frac{d Q}{d t}=- \text {. (Rate of flow out of } V\right)+ \text { (Rate of creator } \\
& \text { decreases } Q \\
& \text { unsure } V \text {) } \\
& =-\int_{S} \vec{J} \cdot \hat{n} d a+\int_{V} R d^{3} r
\end{aligned}
$$

bb)
(i) $(-1-i)^{2}=1+2 i+(-i)^{2}=2 i=2 e^{i \pi / 2}$ another way $(-1-i)^{2}=(1+i)_{\text {polar form }}^{2}=\left(\sqrt{2} e^{i \pi / 4}\right)^{2}$

$$
\Rightarrow(-1-i)^{2}=2 e^{i \pi / 2}=2 i
$$

$$
\begin{aligned}
& \text { (ii) } \frac{1}{\omega^{2}-\omega_{0}^{2}-i \omega \Gamma} \frac{\left(\omega^{2}-\omega_{0}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{0}^{2}+i \omega \Gamma\right)} \begin{array}{c}
\text { Multiply top } \\
\text { and bottom by } \\
\text { conjugate }
\end{array} \\
& =\left[\frac{\omega_{0}^{2}-\omega_{0}^{2}}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\omega^{2} \Gamma^{2}}\right]+i\left[\frac{\omega \Gamma}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\omega^{2} \Gamma^{2}}\right]
\end{aligned}
$$

Real-imaginary form

$$
\begin{aligned}
\frac{1}{\omega^{2}-\omega_{0}^{2}-i \omega \Gamma}= & \left(\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\omega^{2} \Gamma^{2}} e^{i \theta}\right)^{-1} \\
& \text { where } \theta=\tan ^{-1}\left(\frac{-\omega \Gamma}{\omega^{2}-\omega_{0}^{2}}\right)
\end{aligned}
$$

$$
\frac{1}{1 \omega^{2}-\omega_{0}^{2}-i \omega \Gamma}=\frac{1}{\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\omega^{2} \Gamma^{2}}} e^{-i \theta}
$$

(iii)

$$
\begin{aligned}
\sqrt{-i}=\left(e^{-i \pi / 2}\right)^{1 / 2} & =e^{-i \pi / 4} \\
& =\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{(i v)}{\frac{e^{-i \omega t}}{\omega^{2}-\omega_{0}^{2}-i \omega \Gamma}}=\frac{1}{\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\omega^{2} \Gamma^{2}} e^{-i(\omega t+\theta)}} \\
\text { where } \theta=\tan ^{-1}\left(\frac{-\omega \Gamma}{\omega^{2}-\omega_{0}^{2}}\right) \\
=\frac{\cos (\omega t+\theta)}{\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\omega^{2} \Gamma^{2}}} i \frac{\sin (\omega t+\theta)}{\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\omega^{2} \Gamma^{2}}}
\end{array}
$$

2)

 Change \vec{B} flux thu coil
pain $\overrightarrow{{ }^{\text {direction }}}$ of in coal \vec{B} cont consistent with right In dial Φ_{B} in coil is Φ., final value Φ. What's the total change Q which parser thu circuit due \# to this $\Delta \Phi_{B}$ and show that its independent of the $d \Phi_{B} / d t$.

$$
R I=\frac{R d Q}{d t}=\varepsilon=-\frac{d \Phi_{B}}{d t}
$$

$$
\begin{aligned}
& \frac{d Q}{d t}=-\frac{1}{R} \frac{d \Phi_{B}}{d t} \rightarrow \Delta Q=-\frac{1}{R} \Delta \Phi_{B}=-\frac{1}{R}\left(\Phi_{G}-\Phi_{i}\right) \\
& \Delta Q=-\left(\frac{\left(\Phi_{B, G}-\Phi_{B, i}\right)}{R}\right) \text { Sign? The } \Delta \Phi>0 \\
& \text { and take + flux } \\
& \text { to be out of page. }
\end{aligned}
$$

That means Hat the flux increases in direction out of page, so by Linz law the current should flow clock-wise 2 to gie an opposing flux into page ('Nature abhors a change in flux").
The music sign is there to tell you that the direction of the current is - that which you would get by using the right hand rule with thumb in direction of initial flux.

Now take initial direction of coil of \vec{B} as
b)

$$
\begin{aligned}
\bar{Q}_{i} & =\int \vec{B} \cdot d \vec{a}= \\
& =N B A
\end{aligned}
$$ flip coil by 90° :

c) flip coil by 180°

Sum the $\triangle Q$ in 2 steps:
part a) result of 90° flip $+2^{\text {nd }} 90^{\circ}$ flip.
For the latter we need to heep track of diss erection of I:
edge rem of coil $\Phi=0 \quad$ flip 0^{*} Ind.

Traduced contains to be in same direction So: $\quad \triangle Q=2 \mathrm{NBA} / R$
3)

culcte resistance R :

$$
V_{2}-V_{1}=-\int_{1}^{2} \vec{E} \cdot \overrightarrow{d l}
$$

$$
I=\oint_{S_{2}} \vec{J} \cdot \overrightarrow{d a}_{2}=-\oint_{s_{1}} \vec{J} \cdot \overrightarrow{d a_{1}}
$$

$$
R=\frac{V_{2}-V_{1}}{I}=\frac{E}{\sigma} \underbrace{\frac{V_{2}-V_{1}}{Q}}_{1 / C}
$$

$\Rightarrow R C=\epsilon / \sigma$

Units: $[R C]=[\epsilon \mid \sigma]=s$

$$
\begin{aligned}
& {[R] \cdot \Omega=\frac{S}{F}} \\
& {[\sigma] \cdot \frac{1}{\Omega-m}=\frac{F / m}{S}} \\
& {[\epsilon] \cdot F / m}
\end{aligned}
$$

(b) The analysis in (a) is consistant with charge consorvation because

- no froe ange

$$
\nabla \cdot \vec{J}=\nabla \cdot(\sigma \vec{E})=\nabla \cdot\left(\frac{\sigma}{\epsilon} \vec{D}\right)=\frac{\sigma}{\epsilon} \nabla \cdot \vec{D}=0 \underbrace{\text { welime }}_{\text {Medium }}
$$

$\tau \sigma, \in$ hangenoows
Things would be difforent if σ or ϵ dopondol on postion.
(c)

$$
\begin{aligned}
& P=\sigma \int d \tau E^{2}=-\sigma \int d \tau \underbrace{\nabla V \cdot \vec{E}} \\
& \checkmark \overbrace{\nabla \cdot(\vec{V})}^{\nabla \nabla \cdot \vec{E}} \\
& \text { คleo:o } \\
& \uparrow \\
& \text { no chinge } \\
& \text { in the } \\
& \text { modium }
\end{aligned}
$$

This is thic divorgence. Theorm: the uwward. wormals from the modium are - $\overrightarrow{d a}$, aid- $-\overrightarrow{d a}_{2 j}$ the Suretace at $\infty 0$ dobent Contributo because $\sqrt{\vec{E}}$ goos to zoo fautor than $1 / r^{2}$

$$
\left.\begin{array}{l}
=\sigma\left(V_{1} \oint_{s_{1}} \vec{E} \cdot \overrightarrow{d a_{1}}+V_{2} \oint_{s_{2}} \vec{E} \cdot \overrightarrow{d a_{2}}\right) \\
=\frac{\sigma}{\epsilon}\left(V_{1} \oint_{Q_{1}} \overrightarrow{S_{1}} \vec{D} \cdot \overrightarrow{d a_{1}}\right.
\end{array}\right) V_{2} \cdot \underbrace{\oint_{s_{2}}}_{Q_{2} \cdot Q} \vec{D} \cdot \overrightarrow{d a_{2}}), ~\left(V_{2}-V_{1}\right) Q .
$$

So $P=\underbrace{\frac{\sigma}{\epsilon} C\left(V_{2}-V_{1}\right)^{2}}_{1 R}$

$$
\begin{aligned}
& =\frac{\left(V_{2}-V_{1}\right)^{2}}{R} \\
& =I^{2} R
\end{aligned}
$$

¿us. Ohn's law
(d) Now lef the torminals dischargs aftor being charged up to potential difference V_{0}.

Ohm's taw:

$$
\begin{aligned}
V=V_{2}-V_{1}= & I R \\
& \frac{A}{1} \\
& \frac{d Q_{1}}{d t}=-\frac{d Q}{d t}=-C \frac{d V}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \frac{d V}{d t}=- \\
& \frac{d V}{d t}=-\frac{V}{\tau}
\end{aligned}
$$

$$
\equiv 1 / \tau \quad \tau=R C=\epsilon / \sigma
$$

Intograto: $\frac{d V}{V}=-\frac{d t}{\tau} \Rightarrow \ln \frac{X}{V_{0}}=-\frac{t}{\tau}$

$$
V=V_{0} e^{-t / \tau}
$$

A good condwator (like whopper) has

$$
\begin{aligned}
& \epsilon=\epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
& \sigma=1 / \rho=\frac{1}{1.7 \times 10^{-8}} \frac{1}{\Omega-m} \\
& \Rightarrow \tau=\frac{\epsilon}{\sigma}=\left(8.85 \times 10^{-12}\right)\left(1.7 \times 10^{-8}\right) \simeq 10^{-20} \mathrm{~s}
\end{aligned}
$$

You might thinin this is a problem, because soon for very small distress between the terminals, say $10^{-4} \mathrm{~m}$, it corresponds to a velocity

$$
\frac{10^{-6} m}{10^{-20} \mathrm{~s}}=10^{1+} \mathrm{m}-s^{-1}>c_{1}
$$

much grouter than the speed of light. This isn't rally a problem because individual charges move only a tiny distance to neutralize the terminals. The real problem is ethical that this time is much shoutor than a collision time, $\tau_{c} \sim 3\left(10^{-14} s\right.$, is a good conductor This moans Ohm's law isn't really valid an a time Scale as short as $\tau \sim 10^{-20} \mathrm{~s}$.
4)

a)

$$
\begin{aligned}
& \frac{d \Phi_{B}}{d t}=-\varepsilon=-V=-I R \quad \text { to right } \\
& \begin{aligned}
\frac{d}{d t} \int \vec{B} \cdot d \vec{a} & =B l \frac{d x}{d t}=B l v=-I R \\
& \quad \uparrow \text { into page } \\
& \Rightarrow I=-B l v / R
\end{aligned}
\end{aligned}
$$

Here, R is rescotance: \& flux increases into page as rod moves
duection opposite
that given right hand
rule \rightarrow counter-clockwise \bigcirc Induced I
b) What is \vec{F} on rod? From lorents Law:

Duection of + charges moving
velocity of change carrier NOT sod! Given by -direction of induced current
in rod is \uparrow, s. $q \vec{V} \times \vec{B}$ is to the Left, opposing the initial vel. of rod to the right
$\vec{N} \quad \mid \vec{e} \rightarrow \vec{v}_{\text {rod }} \quad$ To get the magnitude of the \vec{F} we use $\vec{F}=\operatorname{Dr} \quad I \vec{l} \times \vec{B}$ with \vec{l} in duection of I

$$
|\vec{F}|=I \ell B=B^{2} \operatorname{lv}_{v_{r o d} \sigma A}
$$

c) If rod is given an initial velocity \vec{v}_{0} to the right, what is $\vec{v}(t)$ later on?

$$
\vec{F}=m \frac{d \vec{v}}{d t}=-B_{\vec{F}}^{2} l \vec{v} \sigma A
$$

$M=\rho_{m} A l$, mass of rod \vec{F} opposes \vec{v}

$$
\frac{d v}{v}=-\frac{B^{2} l \sigma A}{m}=-\frac{B^{2} \sigma A}{\rho_{m}}
$$

integration $\int_{v_{0}}^{v(t)}()=-\int_{0}^{t}$

$$
\begin{aligned}
\Rightarrow v(t) & =v_{0} e^{-B^{2} \sigma t / \rho_{m}} \\
v(t) & =v_{0} e^{-\Gamma t}, \Gamma \equiv \frac{B^{2} \sigma}{\rho_{m}}
\end{aligned}
$$

d) Initial $K \cdot E=\frac{1}{2} m v_{0}^{2} ; t \rightarrow \infty$ all of thin

Where does it go? Has to go into resistor as heat: $P=I^{2} R=V I$. From part a): os _I $I=B v \sigma A$, which is a funct.

$$
\begin{aligned}
& I(t)=B \sigma A v(t) \\
\Rightarrow & P F I^{2} R=B^{2} \sigma^{2} A^{2} R v^{2}(t)
\end{aligned}
$$

