6) Biot-Savart
\[\mathbf{B} = \frac{\mu_0}{4\pi} i \mathbf{L} \times \mathbf{v} / \mathbf{v}^2 \]

a) \[\mathbf{L} \] along -x axis (to left)
\[\mathbf{N} \] points along +x axis also
So \[\mathbf{L} \times \mathbf{N} = 0 \] \[\Rightarrow \mathbf{B} = 0 \]

b) \[\mathbf{N} \] is 1 dl for all points on circle
\[\mathbf{N} \times \mathbf{dl} \] points out of page.

\[i \cdot \mathbf{B} = \frac{\mu_0}{4\pi} \int \mathbf{N} \cdot \mathbf{dl} = \frac{\mu_0 i}{4\pi\pi^2} \pi \mathbf{N} = \frac{\mu_0 i}{4\pi} \mathbf{N} \]

7) a) Force on dipole in uniform \(\mathbf{B} = 0 \)

b) False - Paramagnetism due to permanent magnetic dipole moment of atoms - not all atoms have

c) Not reasonable - MRI involves \(\mathbf{B} \) and alternating EM field, not radiation

d) False, B = \(\mathbf{N} \times \mathbf{dl} \) points out of paper everywhere

e) For \(i \) going up - + \(\Theta \) carriers, bent to left
 \[\text{Von left} \rightarrow + \]

For \(\Theta \) carriers, bent to left side of strip
 \[\Rightarrow \text{Von left} \rightarrow - \]