
 
 

Matrix Algebra 
  

History: (http://www-groups.dcs.st-
and.ac.uk/~history/HistTopics/Matrices_and_determinants.

html) 
The beginnings of matrices and determinants goes back to the second century BC 
although traces can be seen back to the fourth century BC. However it was not until near 
the end of the 17th Century that the ideas reappeared and development really got 
underway.  

It is not surprising that the beginnings of matrices and determinants should arise through 
the study of systems of linear equations. The Babylonians studied problems which lead to 
simultaneous linear equations and some of these are preserved in clay tablets which 
survive. For example a tablet dating from around 300 BC contains the following 
problem:-  

There are two fields whose total area is 1800 square yards. One produces grain at the 
rate of 2/3 of a bushel per square yard while the other produces grain at the rate of 1/2 a 
bushel per square yard. If the total yield is 1100 bushels, what is the size of each field.  

The Chinese, between 200 BC and 100 BC, came much closer to matrices than the 
Babylonians. Indeed it is fair to say that the text Nine Chapters on the Mathematical Art 
written during the Han Dynasty gives the first known example of matrix methods. First a 
problem is set up which is similar to the Babylonian example given above:-  

There are three types of corn, of which three bundles of the first, two of the second, and 
one of the third make 39 measures. Two of the first, three of the second and one of the 
third make 34 measures. And one of the first, two of the second and three of the third 
make 26 measures. How many measures of corn are contained of one bundle of each 
type?  

Now the author does something quite remarkable. He sets up the coefficients of the 
system of three linear equations in three unknowns as a table on a 'counting board'. 
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           1   2   3 
 
           2   3   2 
 
           3   1   1 
 
          26  34  39 
 
 
Our late 20th Century methods would have us write the linear equations as the rows of the 
matrix rather than the columns but of course the method is identical. Most remarkably the 
author, writing in 200 BC, instructs the reader to multiply the middle column by 3 and 
subtract the right column as many times as possible, the same is then done subtracting the 
right column as many times as possible from 3 times the first column. This gives 
 
 
           0   0   3 
 
           4   5   2 
 
           8   1   1 
 
          39  24  39 
 
 
Next the left most column is multiplied by 5 and then the middle column is subtracted as 
many times as possible. This gives 
 
 
           0   0   3 
 
           0   5   2 
 
          36   1   1 
 
          99  24  39 
 
 
from which the solution can be found for the third type of corn, then for the second, then 
the first by back substitution. This method, now known as Gaussian elimination, would 
not become well known until the early 19th Century.  

Cardan, in Ars Magna (1545), gives a rule for solving a system of two linear equations 
which he calls regula de modo and which [7] calls mother of rules ! This rule gives what 
essentially is Cramer's rule for solving a 2 2 system although Cardan does not make the 
final step. Cardan therefore does not reach the definition of a determinant but, with the 
advantage of hindsight, we can see that his method does lead to the definition.  

Many standard results of elementary matrix theory first appeared long before matrices 
were the object of mathematical investigation. For example de Witt in Elements of 
curves, published as a part of the commentaries on the 1660 Latin version of Descartes' 
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Géométrie , showed how a transformation of the axes reduces a given equation for a 
conic to canonical form. This amounts to diagonalising a symmetric matrix but de Witt 
never thought in these terms.  

The idea of a determinant appeared in Japan and Europe at almost exactly the same time 
although Seki in Japan certainly published first. In 1683 Seki wrote Method of solving the 
dissimulated problems which contains matrix methods written as tables in exactly the 
way the Chinese methods described above were constructed. Without having any word 
which corresponds to 'determinant' Seki still introduced determinants and gave general 
methods for calculating them based on examples. Using his 'determinants' Seki was able 
to find determinants of 2 2, 3 3, 4 4 and 5 5 matrices and applied them to solving 
equations but not systems of linear equations.  

Rather remarkably the first appearance of a determinant in Europe appeared in exactly 
the same year 1683. In that year Leibniz wrote to de l'Hôpital. He explained that the 
system of equations 

 
 
       10 + 11x + 12y = 0 
 
       20 + 21x + 22y = 0 
 
       30 + 31x + 32y = 0 
 
 
had a solution because  

10.21.32 + 11.22.30 + 12.20.31 = 10.22.31 + 11.20.32 + 12.21.30  

which is exactly the condition that the coefficient matrix has determinant 0. Notice that 
here Leibniz is not using numerical coefficients but  

two characters, the first marking in which equation it occurs, the second marking which 
letter it belongs to.  

Hence 21 denotes what we might write as a21.  

Leibniz was convinced that good mathematical notation was the key to progress so he 
experimented with different notation for coefficient systems. His unpublished 
manuscripts contain more than 50 different ways of writing coefficient systems which he 
worked on during a period of 50 years beginning in 1678. Only two publications (1700 
and 1710) contain results on coefficient systems and these use the same notation as in his 
letter to de l'Hôpital mentioned above.  

Leibniz used the word 'resultant' for certain combinatorial sums of terms of a 
determinant. He proved various results on resultants including what is essentially 
Cramer's rule. He also knew that a determinant could be expanded using any column - 
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what is now called the Laplace expansion. As well as studying coefficient systems of 
equations which led him to determinants, Leibniz also studied coefficient systems of 
quadratic forms which led naturally towards matrix theory.  

In the 1730's Maclaurin wrote Treatise of algebra although it was not published until 
1748, two years after his death. It contains the first published results on determinants 
proving Cramer's rule for 2 2 and 3 3 systems and indicating how the 4 4 case 
would work. Cramer gave the general rule for n n systems in a paper Introduction to 
the analysis of algebraic curves (1750). It arose out of a desire to find the equation of a 
plane curve passing through a number of given points. The rule appears in an Appendix 
to the paper but no proof is given:-  

One finds the value of each unknown by forming n fractions of which the common 
denominator has as many terms as there are permutations of n things.  

Cramer does go on to explain precisely how one calculates these terms as products of 
certain coefficients in the equations and how one determines the sign. He also says how 
the n numerators of the fractions can be found by replacing certain coefficients in this 
calculation by constant terms of the system.  

Work on determinants now began to appear regularly. In 1764 Bezout gave methods of 
calculating determinants as did Vandermonde in 1771. In 1772 Laplace claimed that the 
methods introduced by Cramer and Bezout were impractical and, in a paper where he 
studied the orbits of the inner planets, he discussed the solution of systems of linear 
equations without actually calculating it, by using determinants. Rather surprisingly 
Laplace used the word 'resultant' for what we now call the determinant: surprising since it 
is the same word as used by Leibniz yet Laplace must have been unaware of Leibniz's 
work. Laplace gave the expansion of a determinant which is now named after him.  

Lagrange, in a paper of 1773, studied identities for 3 3 functional determinants. 
However this comment is made with hindsight since Lagrange himself saw no connection 
between his work and that of Laplace and Vandermonde. This 1773 paper on mechanics, 
however, contains what we now think of as the volume interpretation of a determinant for 
the first time. Lagrange showed that the tetrahedron formed by O(0,0,0) and the three 
points M(x,y,z), M'(x',y',z'), M"(x",y",z") has volume  

1/6 [z(x'y" - y'x") + z'(yx" - xy") + z"(xy' - yx')].  

The term 'determinant' was first introduced by Gauss in Disquisitiones arithmeticae 
(1801) while discussing quadratic forms. He used the term because the determinant 
determines the properties of the quadratic form. However the concept is not the same as 
that of our determinant. In the same work Gauss lays out the coefficients of his quadratic 
forms in rectangular arrays. He describes matrix multiplication (which he thinks of as 
composition so he has not yet reached the concept of matrix algebra) and the inverse of a 
matrix in the particular context of the arrays of coefficients of quadratic forms.  
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Gaussian elimination, which first appeared in the text Nine Chapters on the Mathematical 
Art written in 200 BC, was used by Gauss in his work which studied the orbit of the 
asteroid Pallas. Using observations of Pallas taken between 1803 and 1809, Gauss 
obtained a system of six linear equations in six unknowns. Gauss gave a systematic 
method for solving such equations which is precisely Gaussian elimination on the 
coefficient matrix.  

It was Cauchy in 1812 who used 'determinant' in its modern sense. Cauchy's work is the 
most complete of the early works on determinants. He reproved the earlier results and 
gave new results of his own on minors and adjoints. In the 1812 paper the multiplication 
theorem for determinants is proved for the first time although, at the same meeting of the 
Institut de France, Binet also read a paper which contained a proof of the multiplication 
theorem but it was less satisfactory than that given by Cauchy.  

In 1826 Cauchy, in the context of quadratic forms in n variables, used the term 'tableau' 
for the matrix of coefficients. He found the eigenvalues and gave results on 
diagonalisation of a matrix in the context of converting a form to the sum of squares. 
Cauchy also introduced the idea of similar matrices (but not the term) and showed that if 
two matrices are similar they have the same characteristic equation. He also, again in the 
context of quadratic forms, proved that every real symmetric matrix is diagonalisable.  

Jacques Sturm gave a generalisation of the eigenvalue problem in the context of solving 
systems of ordinary differential equations. In fact the concept of an eigenvalue appeared 
80 years earlier, again in work on systems of linear differential equations, by D'Alembert 
studying the motion of a string with masses attached to it at various points.  

It should be stressed that neither Cauchy nor Jacques Sturm realised the generality of the 
ideas they were introducing and saw them only in the specific contexts in which they 
were working. Jacobi from around 1830 and then Kronecker and Weierstrass in the 
1850's and 1860's also looked at matrix results but again in a special context, this time the 
notion of a linear transformation. Jacobi published three treatises on determinants in 
1841. These were important in that for the first time the definition of the determinant was 
made in an algorithmic way and the entries in the determinant were not specified so his 
results applied equally well to cases were the entries were numbers or to where they were 
functions. These three papers by Jacobi made the idea of a determinant widely known.  

Cayley, also writing in 1841, published the first English contribution to the theory of 
determinants. In this paper he used two vertical lines on either side of the array to denote 
the determinant, a notation which has now become standard.  

Eisenstein in 1844 denoted linear substitutions by a single letter and showed how to add 
and multiply them like ordinary numbers except for the lack of commutativity. It is fair to 
say that Eisenstein was the first to think of linear substitutions as forming an algebra as 
can be seen in this quote from his 1844 paper:-  
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An algorithm for calculation can be based on this, it consists of applying the usual rules 
for the operations of multiplication, division, and exponentiation to symbolic equations 
between linear systems, correct symbolic equations are always obtained, the sole 
consideration being that the order of the factors may not be altered.  

The first to use the term 'matrix' was Sylvester in 1850. Sylvester defined a matrix to be 
an oblong arrangement of terms and saw it as something which led to various 
determinants from square arrays contained within it. After leaving America and returning 
to England in 1851, Sylvester became a lawyer and met Cayley, a fellow lawyer who 
shared his interest in mathematics. Cayley quickly saw the significance of the matrix 
concept and by 1853 Cayley had published a note giving, for the first time, the inverse of 
a matrix.  

Cayley in 1858 published Memoir on the theory of matrices which is remarkable for 
containing the first abstract definition of a matrix. He shows that the coefficient arrays 
studied earlier for quadratic forms and for linear transformations are special cases of his 
general concept. Cayley gave a matrix algebra defining addition, multiplication, scalar 
multiplication and inverses. He gave an explicit construction of the inverse of a matrix in 
terms of the determinant of the matrix. Cayley also proved that, in the case of 2 2 
matrices, that a matrix satisfies its own characteristic equation. He stated that he had 
checked the result for 3 3 matrices, indicating its proof, but says:-  

I have not thought it necessary to undertake the labour of a formal proof of the theorem 
in the general case of a matrix of any degree.  

That a matrix satisfies its own characteristic equation is called the Cayley-Hamilton 
theorem so its reasonable to ask what it has to do with Hamilton. In fact he also proved a 
special case of the theorem, the 4 4 case, in the course of his investigations into 
quaternions.  

In 1870 the Jordan canonical form appeared in Treatise on substitutions and algebraic 
equations by Jordan. It appears in the context of a canonical form for linear substitutions 
over the finite field of order a prime.  

Frobenius, in 1878, wrote an important work on matrices On linear substitutions and 
bilinear forms although he seemed unaware of Cayley's work. Frobenius in this paper 
deals with coefficients of forms and does not use the term matrix. However he proved 
important results on canonical matrices as representatives of equivalence classes of 
matrices. He cites Kronecker and Weierstrass as having considered special cases of his 
results in 1874 and 1868 respectively. Frobenius also proved the general result that a 
matrix satisfies its characteristic equation. This 1878 paper by Frobenius also contains the 
definition of the rank of a matrix which he used in his work on canonical forms and the 
definition of orthogonal matrices.  

The nullity of a square matrix was defined by Sylvester in 1884. He defined the nullity of 
A, n(A), to be the largest i such that every minor of A of order n-i+1 is zero. Sylvester was 
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interested in invariants of matrices, that is properties which are not changed by certain 
transformations. Sylvester proved that  

max{n(A), n(B)} n(AB) n(A) + n(B).  

In 1896 Frobenius became aware of Cayley's 1858 Memoir on the theory of matrices and 
after this started to use the term matrix. Despite the fact that Cayley only proved the 
Cayley-Hamilton theorem for 2 2 and 3 3 matrices, Frobenius generously attributed 
the result to Cayley despite the fact that Frobenius had been the first to prove the general 
theorem.  

An axiomatic definition of a determinant was used by Weierstrass in his lectures and, 
after his death, it was published in 1903 in the note On determinant theory. In the same 
year Kronecker's lectures on determinants were also published, again after his death. 
With these two publications the modern theory of determinants was in place but matrix 
theory took slightly longer to become a fully accepted theory. An important early text 
which brought matrices into their proper place within mathematics was Introduction to 
higher algebra by Bôcher in 1907. Turnbull and Aitken wrote influential texts in the 
1930's and Mirsky's An introduction to linear algebra in 1955 saw matrix theory reach its 
present major role in as one of the most important undergraduate mathematics topic.  
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This document serves as an introduction to the basics of matrix algebra, and the 
application of matrices to solving common problems. We produced this guide primarily 
to support of MatrixCalculator software for Windows, but we hope it will be useful to 
others too. 
  
You can download a trial version of the program from our website, www.morello.co.uk
  

What is a matrix? 
  
A matrix is a rectangular array of numbers (called elements), consisting of m rows and n 
columns: 
  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
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nmmm

n

n

aaa

aaa
aaa

A
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,12,11,1

..
...
...

..

..

  
This is said to be a matrix of order m by n. For instance, here is a 2 by 3 matrix: 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
123
321

  
If you are from a C/C++ programming background, you will notice that a matrix is very 
much like a 2 dimensional array, but beware – the indices start from 1 (whereas C array 
indices start from zero). Also, note that the ordering is row index followed by column 
index, where a programmer might naturally put the column index first. This is just the 
way matrix algebra is traditionally written. 
  
Matrices are useful in a solving a number of problems. After we have described the basic 
algebra of matrices in the sections below, we will go on to give a couple of real life 
examples. 

2 Matrix Algebra 

Addition 
  
It is only possible to add 2 matrices if they are of the same order (ie same number of rows 
and columns). If we add matrices A and B to give a result X, then each element of X is 
simply the sum of the 2 corresponding elements of A and B, 
  

jijiji bax ,,, +=
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for example 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎜⎜
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=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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321

BA

B

A

  
Since matrix addition is performed simply by adding the individual elements, clearly you 
will get the same result whatever order you add the matrices in. In maths jargon we say 
that the operation is both commutative and associative: 
  

)()( CBACBA
ABBA

++=++
+=+

  

Subtraction 
  
Subtraction of 2 matrices is analogous with addition: 
  

jijiji bax ,,, −=
  
for example, using the same A and B as before 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

553
331

BA

  

Scalar Multiplication 
  
Scalar multiplication, ie multiplying a matrix by a number (eg F) is simply a matter of 
multiplying each element of the matrix by the number: 
  

ijji aFx ,, ×=
  
For example: 
  



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=×

181512
963

654
321

33 A

  
It should be clear from the above that scalar multiplication is commutative, ie 
  

33 ×=× AA
  
and also that scalar multiplication is distributive over addition and subtraction, ie 
  

BABA ×+×=+× 33)(3
  

Matrix Multiplication 
  
We can multiply 2 matrices to give a matrix result: 
  

BAX ×=
  
It is only possible to multiply A and B if the number of columns of A is equal to the 
number of rows of B (A and B are then said to be conformable). If A is an n by m matrix, 
and B is an m by p matrix, then X will be a n by p matrix. The definition of X is: 
  

jk

m

k
kiji bax ,

1
,, ×=∑

=

  
For example, we can multiply a 2 by 3 matrix and a 3 by 2 matrix, resulting in a 2 by 2 
matrix: 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×+×+××+×+×
×+×+××+×+×

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
22462
8026

101189674112907
1058361452301

104
82
60

1197
531

  
Notice what happens if we change the order of the 2 matrices. This time we are 
multiplying a 3 by 2 matrix with a 2 by 3 matrix, and the result is a 3 by 3 matrix, quite 
different from the previous result: 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

13010274
987858
665442

1197
531

104
82
60

  
This illustrates that matrix multiplication is not commutative. In fact, if you exchange the 
matrices, the multiplication may become invalid due to conformability. For example, if A 



is a 2 by 3 matrix and B is a 3 by 3 matrix, it is possible to for the product AB, but not 
BA. 
  
Matrix multiplication is, however, associative and distributive. In summary: 
  

CBCACBA
CBACBA

ABBA

×+×=×+
××=××

×≠×

)(
)()(

  

Transposition 
  
Transposing a matrix means converting and m by n matrix into an n by m matrix, by 
“flipping” the rows and columns. 
  

ijji ax ,, =
  
It is denoted by a superscript T, eg: 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

63
52
41

654
321

TA

A

  
As an aside, there is an interesting relationship between transposition and multiplication: 
  

TTT ABBA ×=× )(
  
If you are interested, you can prove this for yourself fairly easily. Hint – look at the 
definition of matrix multiply, and try swapping the subscripts! 

Equality 
  
2 matrices are considered to be equal if they are of the same order, and if all their 
corresponding elements are equal. 

3 Special Types of Matrix 

Vector 
  
A row vector is a matrix containing a single row, eg 



  
( )321
  
A column vector is a matrix containing a single column, eg 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3
2
1

  
Both of these forms can be used to represent vector quantities which can be manipulated 
by matrix algebra, see later. To convert between these forms, simply transpose the 
matrix. 
  

Zero (Null) Matrix 
  
A zero, or null, matrix is one where every element is zero, eg 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
000
000

Square Matrix 
  
A square matrix is one where the number of rows and columns are equal, eg a 2 by 2 
matrix, a 3 by 3 matrix etc. 

Diagonal Matrix 
  
A diagonal matrix is a square matrix in which all the elements are zero except for the 
elements on the leading diagonal, eg: 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

300
020
001

  

Unit Matrix 
  
A unit matrix is a square matrix in which all the elements on the leading diagonal are 1, 
and all the other elements are 0, eg: 
  



⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

  
The reason that this is called a unit matrix is that if you multiply any matrix by a unit 
matrix (of the correct size), you will get back the original matrix. A unit matrix is often 
denoted by I (identity matrix). 
  

Symmetric Matrix 
  
A symmetrix matrix is a square matrix where 
  

ijji aa ,, =
  
for all elements. Ie, the matrix is symmetrical about the leading diagonal. For example 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

653
542
321

  

Skew Symmetric Matrix 
  
A skew symmetrix matrix is a square matrix where 
  

ijji aa ,, −=
  
for all elements. Ie, the matrix is anti-symmetrical about the leading diagonal. This of 
course requires that elements along the diagonal must be zero. For example 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

053
502
320

  

Orthogonal Matrix 
  
An orthogonal matrix is a square matrix which produces a unit matrix if it is multiplied 
by its own transpose. Ie: 
  

IAA T =×



  

4 Inverse Matrices and Determinants 

The Inverse of a Matrix 
  
The inverse (or reciprocal) of a square matrix is denoted by the A-1, and is defined by 
  

IAA =× −1

  
For example 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−
×
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

2.04.08.0
2.06.02.0

6.02.04.0

102
121
211

  
The 2 matrices on the left are inverses of each other, whose product is the unit matrix. 
Not all matrices have an inverse, and those which don’t are called singular matrices. 
  
Inverting a matrix is a very useful technique, and we will see, but how is it done? 
Unfortunately it is slightly more complicated than the basic matrix algebra of the 
previous chapters, so we will need to take a slight detour into the areas of determinants, 
cofactors and adjoint matrices first. 
  

Determinants 
  
In this section we are simply going to define the determinant and, in later sections, point 
out some of its properties. A deeper discussion of determinants probably deserves its own 
paper. 
  
The determinant of a square matrix is a single number calculated by combining all the 
elements of the matrix. For example, the determinant of a 2 by 2 matrix is 
  

2,11,22,21,1
2,21,2

2,11,1 aaaa
aa
aa

×−×=

  
For a 3 by 3 matrix the formula is 
  



3,22,2

3,12,1
1,3

3,32,3

3,12,1
1,2

3,32,3

3,22,2
1,1

3,32,31,3

3,22,21,2

3,12,11,1

aa
aa

a
aa
aa

a
aa
aa

a
aaa
aaa
aaa

×+×−×=

The 2 by 2 determinants are called minors. Every element in a determinant has a 
corresponding minor, formed by deleting the row and column containing that element. 
For a determinant of order n, the minors are of order (n-1). 
  
In general a determinant of order n is calculated from 
  

1,1,
1

1)1( ii

n

i

i ma ××−∑
=

+

  
where m is the minor of a. 
  

Cofactors 
  
The cofactor of an element is the minor multiplied by the appropriate sign 
  

1,
1

1, )1( i
i

i mc ×−= +

  
or more generally 
  

ji
ji

ji mc ,, )1( ×−= +

  

Adjoint Matrices 
  
Every square matrix has an adjoint matrix, found by taking the matrix of its cofactors, 
and transposing it, ie if 
  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

aaa

aaa
aaa

A

,2,1,

,22,21,2

,12,11,1

..
...
...

..

..

  
then the adjoint is 
  



⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

ccc

ccc
ccc

Aadj

,,2,1

2,2,22,1

1,1,21,1

..
...
...

..

..

)(

  

Calculating the Inverse of a Matrix 
  
After the previous slightly complex definitions, the calculation of the inverse matrix is 
relatively simple. 
  

A
AadjA )(1 =−

  
Clearly, if the determinant of A is zero, the inverse cannot be calculated and the matrix is 
said to be singular. 
  

5 Application – Solving Linear Equations 
  
One application of matrices is in solving linear equations (or simultaneous equations as 
they are often known). For example: 
  

17324
20432

6

=++
=++

=++

zyx
zyx

zyx

  
This can be written in terms of matrices: 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

17
20
6

324
432
111

z
y
x

  
or more generally 
  

RXA =×
  
To solve this we simply need to pre-multiply both sides by the inverse of A 
  



RAX
RAXAA

×=

×=××
−

−−

1

11

  
In this case the answer is 
  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−

3
2
1

17
20
6

2
3

3
1

3
2

3
2

3
2

3
1

3
1

3
1

3
1

3
1

 

Eigenvalues 
(http://www.euclideanspace.com/maths/algebra/matrix/functions/eigenv/in
dex.htm) 

The eigenvalues of a matrix [M] are the values of  such that: 

[M] {v} = {v} 

where {v} = a vector 

this gives: 

|M - I| = 0 

where I = identity matrix 

this gives: 

 

so 

(m11- ) (m22- ) (m33- ) + m12 m23 m31 + m13 m21 m32 - (m11- ) m23 m32 - m12 
m 21 (m33- ) - m13 (m22- ) m31 = 0 

the values of  are the eigenvalues of the matrix. 

 

http://www.euclideanspace.com/maths/algebra/matrix/functions/eigenv/index.htm
http://www.euclideanspace.com/maths/algebra/matrix/functions/eigenv/index.htm
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