
Bohr Quantization of Spectra 
 
The problems with the Rutherford model centered on two issues: 1) the stability of atoms 
and 2) the spectra that atoms emitted and absorbed.  It was difficult to imagine a way to 
make the Rutherford model explain these two phenomena within classical physics.  As 
early as 1885, there were empirical (without explanation) formulae that worked 
tremendously well in representing the emission lines from hydrogen.  The Balmer 
equation: 
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predicted the wavelengths of the first nine lines in the hydrogen spectra to one part in 
1000.  In 1890, Rydberg generalized this formula for many emission series in hydrogen 
(and also later for the alkali elements) as 
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where, for hydrogen a = b = 0 and R = RH is the Rydberg constant for hydrogen.  
However, there was still no model for atomic structure that explained these features, 
much less the fact that atoms were stable at all. 
 
In 1913, Bohr made a series of postulates to explain these experimental observations: 
 
B1) An electron moves in a circular orbit about the nucleus under the influence of the 
classical Coulomb force. 
B2) It is only possible for an electron to move in an orbit where its orbital angular 
momentum L is and integral multiple of ћ, i.e., L = nћ. 
B3) An electron moving in such an orbit does not emit radiation despite the fact it is 
accelerating. 
B4) Electromagnetic radiation can be emitted if an electron makes a transition from one 
allowed orbit to another, with the photon energy being the difference between the 
energies of the two levels. 
 
Let’s examine the consequences of these postulates.  Postulate B1 gives us a way to 
calculate the orbital angular momentum of an electron by knowing the Coulomb force 
and the resulting acceleration, and, since it is moving in a circular orbit, we can then 
calculate the velocity, and thus the angular momentum: 
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where the last step uses now postulate B2.  We can now use this relation to calculate the 
allowed radii, velocities and energies: 

( ) 222
0

4
0

2

0

2

0

2
0

2
2

2

0

2

22

0

1
24

24442
1

42
1

4
1

4

n
mZe

r
Ze

r
Ze

mr
Zem

r
ZemvVTE

n
Ze

mr
nv

mZe
nr

h

h

h

h

πε

πεπεπε

πε

πε

πε

−=

−=−=

−=+=

==

=

 

 
So that the radius, velocity and thus the total energy is quantized by quantizing the orbital 
angular momentum.  Now, we use Postulate B4 and calculate the frequency of the 
radiation emitted in a transition between allowed states: 
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or, in terms of the inverse wavelength k = 1/λ = ν/c: 
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which, for hydrogen (Z=1), looks identical to the Rydberg formula with nf = 2.  In fact, if 
one evaluates R∞ it agrees with the Rydberg constant almost perfectly. 
 
The “almost perfectly” can be accounted for by several omissions by Bohr.  The first was 
that he assumed that the nucleus was stationary as the electron orbited, so that the nucleus 
carried no orbital angular momentum.  This can be correct for by quantizing the total 
angular momentum and using the reduced mass angular momentum about the system’s 
center of mass.  The second omission was discovered by refining the spectroscopic data 
to the point where fine splitting of the emission lines were observed.  This was treated by 
Sommerfeld by allowing elliptical orbits, and showing that the Bohr postulates led to 
another quantum number that dictates the quantization of the allowed elliptical paths.  
This, in addition to a relativistic treatment of the electrons, led to a very good working 
model for the energy of electrons in an atom. 


