
(*Probability that n photons are present
(or more accurately: probability that the projection of
a coherent state is a Fock state with photon number n) *)
$\mathrm{p}\left[\mathrm{n}_{-}, \mathrm{nm}_{-}\right]:=\frac{\mathrm{nm}^{\mathrm{n}}}{\text { Factorial [n] }} e^{-\mathrm{nm}}$;
(*nm $=\langle n\rangle, i, e$, the expectation value of the photon number. For example, <n>=1 when you have one photon every coherence time*)
Needs ["PlotLegends`"];
$p 1=\operatorname{DiscretePlot}[\{p[n, .2], p[n, .5], p[n, 1]\}$,
$\{n, 0,4\}$, PlotStyle \rightarrow \{Red, Green, Blue\}, ExtentSize $\rightarrow 0.25$,
PlotRange $\rightarrow\{\{-.2,4.5\},\{0, .89\}\}$, Frame \rightarrow True,
FrameLabel \rightarrow \{"\# photons, n", "probability, $P(n) "\}$,
LabelStyle \rightarrow Directive[Large], FrameStyle \rightarrow Black]

Calculate probability that there are >1 photons present at

a time
or more accurately: probability that the projection of a coherent state is a Fock state with photon number $n>1$
$\langle n\rangle=0.1$
$\ln [45]=1-(p[0, .1]+p[1, .1])$
Out $455=0.00467884$
$\langle n\rangle=0.2$
$\ln [46]:=1-(p[0, .2]+p[1, .2])$
$O u t[46]=0.0175231$
$\langle n\rangle=0.5$
$\ln [47]=1-(\mathrm{p}[0, .5]+\mathrm{p}[1, .5])$
Out[47]= 0.090204
$\langle n\rangle=1$
m $n(49]=1 .-(p[0,1]+p[1,1])$
$O u t[49]=0.264241$

