PHYC 521: Graduate Quantum Mechanics I

Fall 2009

Homework Assignment #6

(Due October 28)

1- Exercise 16.1.3, Shankar, 2nd edition, page 434.

2- Consider a particle on a line (we choose that to be the x axis). We want to prove that there is no degeneracy in the ground state regardless of the potential V(x).

(a) First prove that the ground state wavefunction $\psi_0(x)$, with energy E_0 , has the same sign for all x. To do this, assume that $\psi_0(x)$ changes sign at the point x_0 (so that it has a node at x_0). Define a new wavefunction $\psi'_0(x) = |\psi_0(x)|$, and show that $\langle \psi'_0 | H | \psi'_0 \rangle = \langle \psi_0 | H | \psi_0 \rangle = E_0$. (Hint: note that $\langle \psi'_0 | P^2 | \psi'_0 \rangle = \langle P \psi'_0 | P \psi'_0 \rangle$; P is the momentum operator.)

(b) Show that $|\psi'_0\rangle$ does not obey the equation $H|\psi'_0\rangle = E_0|\psi'_0\rangle$. Therefore we must have $\langle \psi'_0|H|\psi'_0\rangle > E_0$. This contradicts with (a), which implies that $\psi_0(x)$ cannot change sign.

(c) Now assume that there are two orthogonal eigenstates $|\psi_0\rangle$ and $|\psi_1\rangle$ that have the same eigenvlaue E_0 . Then we know from parts (a),(b) that neither $\psi_0(x)$ nor $\psi_1(x)$ can change sign. Use this to show that $\langle \psi_0 | \psi_1 \rangle \neq 0$. Thus the ground state is unique.

3- Consider two trial functions

$$\psi_0(x) = A(x+a) - a \le x < 0$$

 $\psi_0(x) = A(a-x) \quad 0 < x \le a$

and

$$\begin{split} \psi_1(x) &= B(x+a) & -a \le x < \frac{-a}{2} \\ \psi_1(x) &= -Bx & \frac{-a}{2} < x < \frac{a}{2} \\ \psi_1(x) &= B(x-a) & \frac{a}{2} < x \le a \,, \end{split}$$

both of which vanish for x < -a and x > a.

(a) Determine A and B such that $\psi_0(x)$ and $\psi_1(x)$ are normalized wavefunctions.

(b) Find $\langle \psi_0 | H | \psi_0 \rangle$ and $\langle \psi_1 | H | \psi_1 \rangle$, and compatre them with the energy of the ground state E_0 and the first excited state E_1 of a free particle inside the box -a < x < a. Which of ψ_0 and ψ_1 leads to a better approximation of E_0 ? Which one gives a better approximation of E_1 ? Comment.

(c) Choose a trial function $\psi_2(x)$ along this line to estimate the energy of the second excited state E_2 . State your reason. (No claculation needed, just sketch the trial function that you choose).