PHYC 521: Graduate Quantum Mechanics I

Fall 2009
Homework Assignment \#4

(Due October 7)

1- Consider a real localized potential in one dimension $V(x)$ that vanishes outside some region $[a, b]$. Outside this region the scattering eigenstates are forward and backward propagating plane waves:

$$
\begin{array}{ll}
\psi(x)=A e^{i k x}+B e^{-i k x} & x<a \\
\psi(x)=C e^{i k x}+D e^{-i k x} & x>b
\end{array}
$$

The scattering matrix, known for short as the "S-matrix", relates the incoming and outgoing waves at a fixed energy $E=\hbar^{2} k^{2} / 2 m$:

$$
\left[\begin{array}{l}
B \\
C
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\left[\begin{array}{l}
A \\
D
\end{array}\right]
$$

(a) Show that conservation of probability implies that the S-matrix is unitary, and thus its eigenvalues are of the form $e^{i \phi_{1}}, e^{i \phi_{2}}$ with real ϕ_{1}, ϕ_{2} known as the "scattering phase shifts".
(b) For the particular case that $V(x)$ has reflection symmetry, the S-matrix takes the form

$$
S=\left[\begin{array}{ll}
r & t \\
t & r
\end{array}\right]
$$

where r and t are the complex reflection and transmission amplitudes, with the reflection and transmission probabilities $R=|r|^{2}$ and $T=|t|^{2}$. Using the results from part (a) show that r, t are given in terms of two real parameters R and ϕ_{r}

$$
r=\sqrt{R} e^{i \phi_{r}} \quad, \quad t=i \sqrt{1-R} e^{i \phi_{r}} .
$$

Relate r, t and R, ϕ_{r} to scattering phase shifts ϕ_{1}, ϕ_{2}.

2- A coherent state represents the closest quantum-mechanical wavepacket to a classical motion. It is constructed from the energy eigenstates of a harmonic oscillator as follows:

$$
|\psi\rangle=\exp \left(-|c|^{2} / 2\right) \sum_{n=0}^{\infty} \frac{c^{n}}{\sqrt{n!}}|n\rangle,
$$

where c is an arbitrary complex number.
(a) Show that $|\psi\rangle$ is an eigenstate of the lowering operator a and find the corresponding eigenvalue.
(b) Find the expectation value and uncertainty in the number operator $N=\mathbf{a}^{\dagger} \mathbf{a}$ and show that $\Delta N /\langle N\rangle \rightarrow 0$ as $\langle N\rangle \rightarrow \infty$.

3- Exercise 7.4.3, Shankar, 2nd edition, page 212.

4- Exercise 7.4.6, Shankar, 2nd edition, page 212.

