PHYC 521: Graduate Quantum Mechanics I

Fall 2009

Homework Assignment \#2
(Due September 14)

1- Exercise 4.2.1, Shankar, 2nd edition, page 129.

2- Consider a physical system whose Hilbert space, which is three dimensional, is spanned by orthonormal basis consisting of three kets $\left|u_{1}\right\rangle,\left|u_{2}\right\rangle,\left|u_{3}\right\rangle$. In this basis the Hamiltonian of the system \mathbf{H} and the two observabbles \mathbf{A} and \mathbf{B} have representations:

$$
\mathbf{H}=\mathbf{\hbar} \omega_{\mathbf{0}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \mathbf{A}=\mathbf{a}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad \mathbf{B}=\mathbf{b}\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where $\omega_{\mathbf{0}}$, \mathbf{a}, and \mathbf{b} are real and positive constants. The state of the system at $t=0$ is

$$
|\psi(0)\rangle=\frac{1}{\sqrt{2}}\left|u_{1}\right\rangle+\frac{1}{2}\left|u_{2}\right\rangle+\frac{1}{2}\left|u_{3}\right\rangle .
$$

(a) The energy of the system is measured at $t=0$. What values can be found and with what probabilities? What is the mean value and uncertainty in energy?
(b) If one measures observable \mathbf{A} at $t=0$ what values can be found and with what probabilities? What is the state vector immediately after the measurement?
(c) Find $|\psi(t)\rangle$.
(d) Calculate $\langle\mathbf{A}\rangle(t)$ and $\langle\mathbf{B}\rangle(t)$ for $t>0$. What comments can be made?
(e) What results can be obtained if observable \mathbf{A} is measured at time t. Repeat for B. Interpret.

3- Show that
(a) For a wavefunction $\psi(x)=c \psi_{r}(x)$, where ψ_{r} is real and c is an arbitrary (real or complex) constant, the mean value of momentum $\langle P\rangle=0$.
(b) For a wavefunction $\psi(x)(-\infty<x<\infty)$, where $\psi(-x)=e^{i \alpha} \psi(x)$ (α is a real constant), the mean value of position $\langle X\rangle=0$.

