PHYC 467: Methods of Theoretical Physics II

Spring 2013
Homework Assignment \#8

(Due April 25, 2013)

1- As we discussed before, the direct product of two $S U(2)$ representation with angular momenta j_{1} and j_{2} is decomposed into a direct sum of irreducible representations in the following way:

$$
\mathbf{j}_{1} \otimes \mathbf{j}_{2}=\left(\mathbf{j}_{1}+\mathbf{j}_{2}\right) \oplus\left(\mathbf{j}_{1}+\mathbf{j}_{2}-1\right) \oplus \ldots \oplus\left(\left|\mathbf{j}_{1}-\mathbf{j}_{2}\right|\right)
$$

Verify this relation by using the standard Young diagrams for $S U(2)$.

2- Use the Young diagrams to find how 6 and 8 representations of $S U(3)$ are decomposed into irreducible representations of its $S U(2)$ subgroup(s). Verify your result by using the weight diagrams for these representations.

3- In grand unified theories (GUTs) the strong, weak, and electromagnetic interactions in the standard model that are described by the $S U(3)_{C} \otimes S U(2)_{W} \otimes U(1)_{Y}$ symmetry group are embedded into a single larger group. An example is the $S U(5)$ grand unified theory, where the elementary fermions (i.e., quarks, leptons and their antiparticles) of each generation belong to $\overline{\mathbf{5}} \oplus \mathbf{1 0}$ reducible representation of $S U(5)$.

The 10 representation contains three color states of the up quark, three color states of the down quark, three color states of the up anti-quark, and positron (which has no color). This implies that $\mathbf{1 0}_{S U(5)}=\mathbf{3}_{S U(3)} \oplus \mathbf{3}_{S U(3)} \oplus \overline{\mathbf{3}}_{S U(3)} \oplus \mathbf{1}_{S U(3)}$. Derive this decomposition by using the Young diagrams.

Hint: You may do the decomposition at two steps $S U(5) \rightarrow S U(4) \rightarrow S U(3)$.

