PHYC 467: Methods of Theoretical Physics II

Spring 2013

Homework Assignment #6

(Due April 4, 2013)

1- Consider a unitary representation of a simple Lie group that is spanned by an orthonormal basis $|i\rangle$ $(1 \le i \le n)$. Generators of the group in this representation are denoted by T_a . What do the group generators look like in the representation spanned by the orthonormal basis $\langle i | (1 \le i \le n)$? Conclude that the two representations are complex conjugate of each other.

Hint: Compare the action of infinitesimal group elements in the two representations.

2- Prove that the fundamental representation of SU(2) is real by showing that T_i and $-T_i^*$ $(1 \le i \le 3)$ are related through $\sigma_2^{\dagger}T_i\sigma_2 = -T_i^*$. Use this to comment on whether an *n*-dimensional representation of SU(2) (*n* being an arbitrary integer) is real or complex.

Note: To be more precise, the fundamental representation of SU(2) is pseudo-real since the unitary matrix that relates T_i and $-T_i^*$ is antisymmetric in this case.

3- Consider the direct product of two **3**'s of SU(3) and their decomposition: $\mathbf{3} \otimes \mathbf{3} = \mathbf{6} \oplus \mathbf{\overline{3}}$. Construct all the states of **6** in terms of the states of **3**. Without explicit derivation, argue why the remaining three states in the direct product space form a $\mathbf{\overline{3}}$ instead of a **3**.