PHYC 467: Methods of Theoretical Physics II

Spring 2013

Homework Assignment #5

(Due March 28, 2013)

1- The adjoint representation of SU(3) is given by 8 generators U_i $(1 \le i \le 8)$ where $(U_i)_{jk} = if_{ijk}$. Show that the following relations hold for the two Casimir operators $C_1 = \sum_i U_i^2$ and $C_2 = \sum_{ijk} d_{ijk} U_i U_j U_k$:

$$C_1 = 3I$$
 , $C_2 = 0$,

where I is the identity operator and $d_{ijk} = \text{Tr}([U_i, U_j]_+ U_k)/4$.

Hint: The non-vanishing f_{ijk} are:

$$f_{123}=1 \; , \; f_{147}=\frac{1}{2} \; , \; f_{156}=-\frac{1}{2} \; , \; f_{246}=\frac{1}{2} \; , \; f_{257}=\frac{1}{2} \; ,$$

$$f_{345}=\frac{1}{2} \; , \; f_{367}=-\frac{1}{2} \; , \; f_{458}=\frac{\sqrt{3}}{2} \; , \; f_{678}=\frac{\sqrt{3}}{2} \; ,$$

and those obtained by permutation of the indices. You may also use the following relations:

$$\sum_{ik} f_{ijk} f_{ikl} = -3\delta_{jl} ,$$

$$\sum_{m} f_{pkm} d_{mlq} = -\sum_{m} f_{qkm} d_{mlp} - \sum_{m} f_{lkm} d_{mpq} .$$

2- Show that the Casimir operator $C_1 = \sum_i F_i^2$ in the representation D(p,q) is given by:

$$C_1 = \left(\frac{p^2 + pq + q^2}{3} + p + q\right)I. {1}$$

Verify that for the adjoint representation this gives you the same result as that in problem 1.

Hint: You may write C_1 in terms of T_+ , T_- , V_+ , V_- , U_+ , U_- , U_3 , V_4 and then use the state with maximal weight to evaluate it.