PHYC 467: Methods of Theoretical Physics II

Spring 2013

Homework Assignment \#4

(Due March 5, 2013)

1- One can show that two of the Casimir operators of a semi-simple Lie algebra are given by

$$
\begin{aligned}
C_{1} & =\sum_{i j k} f_{i j k} L_{i} L_{j} L_{k} \\
C_{2} & =\sum_{i j k} d_{i j k} L_{i} L_{j} L_{k}
\end{aligned}
$$

where

$$
f_{i j k}=-i C_{i j k} \quad, \quad d_{i j k}=\operatorname{Tr}\left(\left[L_{i}, L_{j}\right]_{+} L_{k}\right)
$$

Here $C_{i j k}$ are structure constants of the algebra and $\left[L_{i}, L_{j}\right]_{+} \equiv L_{i} L_{j}+L_{j} L_{i}$ denotes the anti-commutator of generators.
(a) Show that $d_{i j k}$'s are symmetric in all indices.
(b) Assuming that generators are normalized, show that $C_{1} \propto \sum_{i} L_{i}^{2}$.
(c) Consider the $S U(2)$ algebra. Explicitly verify that C_{1} is a Casimir operator.
(d) Show that $C_{2}=0$ in the case of $S U(2)$ algebra, which is in agreement with Racah's theorem.

2- Consider the adjoint representation of $S U(2)$ in which $\left(J_{i}\right)_{j k}=C_{i j k}$.
(a) Explicitly write down the $S U(2)$ generators in this representation.
(b) Find a basis in which J^{2} and J_{3} are diagonal. What do J_{1}, J_{2} look like in this basis?

3- Consider 3-dimensional representation of the $S U(2)$ algebra (corresponding to a spin-1 particle). Show that the direct product of two such representations can be decomposed into 5-dimensional, 3-dimensional, and 1-dimensional representations. Find the Clebsch-Gordan coefficients for the 5 -dimensional representation corresponding to a spin- 2 particle.

