PHYC 467: Methods of Theoretical Physics II

Spring 2013

Homework Assignment \#2
(Due February 14, 2013)

1- Let A and B be two complex $n \times n$ matrices. Show that:
(a) If $[A, B]=0$, then

$$
e^{A} e^{B}=e^{A+B}
$$

(b) If B is invertible, then

$$
B e^{A} B^{-1}=e^{B A B^{-1}} .
$$

(c) If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A, then $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$ are the eigenvalues of $\exp (A)$.
(d)

$$
\begin{array}{lll}
{\left[e^{A}\right]^{*}=e^{A^{*}}} & , & {\left[e^{A}\right]^{T}=e^{A^{T}}} \\
{\left[e^{A}\right]^{\dagger}=e^{A^{\dagger}}} & , & {\left[e^{A}\right]^{-1}=e^{-A}}
\end{array}
$$

(e)

$$
\operatorname{det} e^{A}=e^{\operatorname{Tr} A}
$$

2- Generators L_{i} of a Lie group can be normalized such that $\operatorname{Tr}\left(L_{i} L_{j}\right)=\delta_{i j} / 2$. Show that the resulting structure constants are purely imaginary and totally antisymmetric in this case. Verify this in the matrices $\sigma_{1} / 2, \sigma_{2} / 2, \sigma_{3} / 2$ are normalized generators of the $S U(2)$ group, where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ denote the Pauli matrices.

3- Let a_{1}^{\dagger}, a_{1} and a_{2}^{\dagger}, a_{2} denote two sets of creation and annihilation operators that satisfy the following commutation relations:

$$
\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j} \quad, \quad\left[a_{i}, a_{j}\right]=\left[a_{i}^{\dagger}, a_{j}^{\dagger}\right]=0
$$

(a) Show that the three operators

$$
T_{1}=a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}, \quad T_{2}=-i\left(a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{1}\right) \quad, \quad T_{3}=a_{1}^{\dagger} a_{1}-a_{2}^{\dagger} a_{2}
$$

satisfy the same commutation relations as the Pauli matrices, and hence generate the $S U(2)$ algebra.
(b) Show that the number operator defined as $N=a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}$ is a Casimir operator of this $S U(2)$ algebra.

