PHYC 467: Methods of Theoretical Physics II

Spring 2013

Homework Assignment #2

(Due February 14, 2013)

1- Let A and B be two complex $n \times n$ matrices. Show that:

(a) If [A, B] = 0, then

$$e^A e^B = e^{A+B}$$

(b) If B is invertible, then

$$B e^A B^{-1} = e^{BAB^{-1}}$$

(c) If $\lambda_1, ..., \lambda_n$ are the eigenvalues of A, then $e^{\lambda_1}, ..., e^{\lambda_n}$ are the eigenvalues of $\exp(A)$. (d)

$$\begin{split} [e^A]^* &= e^{A^*} \quad , \qquad [e^A]^T = e^{A^T} \, , \\ [e^A]^\dagger &= e^{A^\dagger} \quad , \qquad [e^A]^{-1} = e^{-A} \, . \end{split}$$

(e)

$$\det e^A = e^{\operatorname{Tr} A} \,.$$

2- Generators L_i of a Lie group can be normalized such that $\text{Tr}(L_i L_j) = \delta_{ij}/2$. Show that the resulting structure constants are purely imaginary and totally antisymmetric in this case. Verify this in the matrices $\sigma_1/2$, $\sigma_2/2$, $\sigma_3/2$ are normalized generators of the SU(2) group, where σ_1 , σ_2 , σ_3 denote the Pauli matrices.

3- Let a_1^{\dagger} , a_1 and a_2^{\dagger} , a_2 denote two sets of creation and annihilation operators that satisfy the following commutation relations:

$$[a_i, a_j^{\dagger}] = \delta_{ij}$$
 , $[a_i, a_j] = [a_i^{\dagger}, a_j^{\dagger}] = 0$.

(a) Show that the three operators

$$T_1 = a_1^{\dagger} a_2 + a_2^{\dagger} a_1$$
, $T_2 = -i(a_1^{\dagger} a_2 - a_2^{\dagger} a_1)$, $T_3 = a_1^{\dagger} a_1 - a_2^{\dagger} a_2$,

satisfy the same commutation relations as the Pauli matrices, and hence generate the SU(2) algebra.

(b) Show that the number operator defined as $N = a_1^{\dagger}a_1 + a_2^{\dagger}a_2$ is a Casimir operator of this SU(2) algebra.