PHYC 467: Methods of Theoretical Physics II

Spring 2013
Midterm Exam

- This is a take home exam. Distributed on Tuesday March 5, due on Thursday March 7 by $4: 00 \mathrm{pm}$.
- All reference material allowed, but no DISCUSSING PROBLEMS.
- Any questions are to be directed to the instructor.
- Two problems, equally weighted.

1- Consider the twelve operators $L_{\alpha \beta}\left(1 \leq \alpha, \beta \leq 4\right.$ and $\left.L_{\beta \alpha}=-L_{\alpha \beta}\right)$ that obey the following commutation relations:

$$
\left[L_{\alpha \beta}, L_{\mu \nu}\right]=i\left(\delta_{\alpha \mu} L_{\beta \nu}+\delta_{\beta \nu} L_{\alpha \mu}-\delta_{\alpha \nu} L_{\beta \mu}-\delta_{\beta \mu} L_{\alpha \nu}\right)
$$

The operators $L_{12}, L_{23}, L_{31}, L_{14}, L_{24}, L_{34}$ together with their commutation relations constitute the $S O(4)$ algebra. For simplicity, we define $L_{1}=L_{23}, L_{2}=L_{31}, L_{3}=L_{12}, M_{1}=$ $L_{14}, M_{2}=L_{24}, M_{3}=L_{34}$.
(a) Show the following commutation relations $(1 \leq i, j, k \leq 3)$ are satisfied:

$$
\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} L_{k} \quad, \quad\left[M_{i}, M_{j}\right]=i \epsilon_{i j k} L_{k} \quad, \quad\left[M_{i}, L_{j}\right]=i \epsilon_{i j k} M_{k}
$$

(b) Define new generators $J_{i}=\left(L_{i}+M_{i}\right) / 2$ and $K_{i}=\left(L_{i}-M_{i}\right) / 2$. Show that these generators obey the following commutation relations

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k} \quad, \quad\left[K_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k} \quad, \quad\left[J_{i}, K_{j}\right]=0 .
$$

(c) Use the result in part (b) and show that the $S O(4)$ algebra is equivalent to $S U(2) \otimes S U(2)$. Discuss whether $S O(4)$ is simple or semisimple, its rank, and the number of its Casimir operators.
(d) Use the equivalence between $S O(4)$ and $S U(2) \otimes S U(2)$ and write independent Casimir operators for $S O(4)$.
(e) Show explicitly that $C_{1}=L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+M_{1}^{2}+M_{2}^{2}+M_{3}^{2}$ and $C_{2}=L_{1} M_{1}+L_{2} M_{2}+L_{3} M_{3}$ commute with all the $S O(4)$ generators, and hence are Casimir operators. What is the relation between C_{1}, C_{2} and the Casimir operators in part (d)?

2- Consider three irreducible representations of $S U(2)$ corresponding to $j_{1}=1, j_{2}=1 / 2$, and $j_{3}=1 / 2$ respectively. The direct product of these representation may describe the Hilbert space of a physical system consisting of two identical spin- $1 / 2$ fermions in a P-wave state (at the center-of-mass frame).
(a) Find the dimensionality of each representation and that of their direct product.
(b) Write the decomposition of the direct product representation as a direct sum of irreducible representations and determine their corresponding dimensionality.
(c) Explicitly construct the irreducible representation in part (b) that has the largest value of j by finding all of its Clebsch-Gordan coefficients.

