PHYC 467: Methods of Theoretical Physics II

Spring 2013

Final Exam

Date and Time: 05/07/2013, 09:00-12:00

Instructions:

- This is an open-book, open-note exam. All reference material allowed.
- The exam consists of two problems, which are equally weighted.

1- The Hamiltonian of a three-dimensional isotropic harmonic oscillator is

$$
\begin{equation*}
H=\hbar \omega\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}+a_{3}^{\dagger} a_{3}+\frac{3}{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[a_{i}, a_{j}\right]=\left[a_{i}^{\dagger}, a_{j}^{\dagger}\right]=0 \quad, \quad\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j} \tag{2}
\end{equation*}
$$

Because of the rotational invariance of the isotropic oscillator, the symmetry group for this system is $S O(3)$. The energy eigenvalues E_{n} are given by

$$
\begin{equation*}
E_{n}=\left(n+\frac{3}{2}\right) \hbar \omega \quad n=l+2 k(k \text { an integer }) \tag{3}
\end{equation*}
$$

where $\hbar^{2} l(l+1)$ is the eigenvalue of the orbital angular momentum operator \hat{L}^{2}. This implies that eigenstates with energy E_{n} belong to a reducible representation of $S O(3)$ rather than an irreducible representation. It might look contradictory as $S O(3)$ is a simple Lie group of rank 1 with \hat{L}^{2} as its only Casimir operator.

The resolution lies in that the dynamical symmetry group of the isotropic oscillator in three dimensions is $S U(3)$. This comes from that fact the 8 operators

$$
\begin{align*}
& \lambda_{1}=a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}, \quad \lambda_{2}=-i\left(a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{1}\right) \\
& \lambda_{3}=a_{1}^{\dagger} a_{1}-a_{2}^{\dagger} a_{2}, \quad \lambda_{4}=a_{1}^{\dagger} a_{3}+a_{3}^{\dagger} a_{1} \\
& \lambda_{5}=-i\left(a_{1}^{\dagger} a_{3}-a_{3}^{\dagger} a_{1}\right), \quad \lambda_{6}=a_{2}^{\dagger} a_{3}+a_{3}^{\dagger} a_{2} \\
& \lambda_{7}=-i\left(a_{2}^{\dagger} a_{3}-a_{3}^{\dagger} a_{2}\right), \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}-2 a_{3}^{\dagger} a_{3}\right) \tag{4}
\end{align*}
$$

obey the $S U(3)$ algebra and $\left[H, \lambda_{i}\right]=0$.
(a) From the relation in Eq. (3) find the dimensionality of the reducible representation of $S O(3)$ that contains eigenstates with energy E_{n}.
(b) Show that the states $\left|n_{1}, n_{2}, n_{3}\right\rangle$ (where $0 \leq n_{1,2,3} \leq n, n_{1}+n_{2}+n_{3}=n$) for which

$$
\begin{align*}
a_{1}\left|n_{1}, n_{2}, n_{3}\right\rangle=n_{1}^{1 / 2}\left|n_{1}-1, n_{2}, n_{3}\right\rangle & , \quad a_{1}^{\dagger}\left|n_{1}, n_{2}, n_{3}\right\rangle=\left(n_{1}+1\right)^{1 / 2}\left|n_{1}+1, n_{2}, n_{3}\right\rangle, \\
a_{2}\left|n_{1}, n_{2}, n_{3}\right\rangle=n_{2}^{1 / 2}\left|n_{1}, n_{2}-1, n_{3}\right\rangle, & a_{2}^{\dagger}\left|n_{1}, n_{2}, n_{3}\right\rangle=\left(n_{2}+1\right)^{1 / 2}\left|n_{1}, n_{2}+1, n_{3}\right\rangle, \\
a_{3}\left|n_{1}, n_{2}, n_{3}\right\rangle=n_{3}^{1 / 2}\left|n_{1}, n_{2}, n_{3}-1\right\rangle, & a_{3}^{\dagger}\left|n_{1}, n_{2}, n_{3}\right\rangle=\left(n_{3}+1\right)^{1 / 2}\left|n_{1}, n_{2}, n_{3}+1\right\rangle, \tag{5}
\end{align*}
$$

are energy eigenstates of the isotropic oscillator.
(c) Show that for a given n all of the eigenstates can be found by the action of the following shift operators

$$
\begin{equation*}
T_{ \pm}=\lambda_{1} \pm i \lambda_{2} \quad, \quad V_{ \pm}=\lambda_{4} \pm i \lambda_{5} \quad, \quad U_{ \pm}=\lambda_{6} \pm i \lambda_{7} \tag{6}
\end{equation*}
$$

on the state $|n, 0,0\rangle$. Then argue that these states form a $(n, 0)$ representation of $S U(3)$.
(d) Show that dimension of the $S U(3)$ irreducible representation in part (c) matches that of the $S O(3)$ reducible representation in part (a).

2- In $S U(5)$ grand unified theory (GUT) the elementary fermions (i.e., quarks, leptons and their antiparticles) belong to a $\overline{\mathbf{5}} \oplus \mathbf{1 0}$ representation of $S U(5)$. Fermions acquire their mass through their coupling to Higgs fields, which in the case of $S U(5)$ GUT belong to the $\mathbf{5}$ and $\overline{5}$ representations.

Invariance of interactions under the $S U(5)$ transformations require that the direct product of two fermion representations and a Higgs representation contain a 1 of $S U(5)$.
(a) Form $\overline{\mathbf{5}} \otimes \mathbf{1 0}$ and $\mathbf{1 0} \otimes \mathbf{1 0}$ by using the Young diagrams and find their decomposition into irreducible representations.
(b) Use the results in part (a) and show that $\overline{\mathbf{5}} \otimes \mathbf{1 0} \otimes \overline{\mathbf{5}}$ and $\mathbf{1 0} \otimes \mathbf{1 0} \otimes \mathbf{5}$ contain a $\mathbf{1}$, while $\overline{\mathbf{5}} \otimes \mathbf{1 0} \otimes \mathbf{5}$ and $\mathbf{1 0} \otimes \mathbf{1 0} \otimes \overline{\mathbf{5}}$ do not. This tells you how the Higgs fields must be coupled to the fermions in $S U(5)$ GUT.
(c) Derive the decompositions $\mathbf{5}_{S U(5)}=\mathbf{2}_{S U(2)} \oplus \mathbf{1}_{S U(2)} \oplus \mathbf{1}_{S U(2)} \oplus \mathbf{1}_{S U(2)}, \mathbf{5}_{S U(5)}=\mathbf{3}_{S U(3)}+$ $\mathbf{1}_{S U(3)} \oplus \mathbf{1}_{S U(3)}$ by using the Young diagrams.
(The $\mathbf{2}_{S U(2)}$ is the standard model Higgs, which behaves as $\mathbf{1} \oplus \mathbf{1}$ under the $S U(3)_{C}$ describing the strong interactions. The $\mathbf{3}_{S U(3)}$, which behaves as $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$ under the $S U(2)_{W}$ of the electroweak interactions, becomes very heavy after GUT symmetry breaking and hence inaccessible to experiments.)

